Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 358
Filter
1.
Nat Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956195

ABSTRACT

Recent single-arm studies involving neoadjuvant camrelizumab, a PD-1 inhibitor, plus chemotherapy for resectable locally advanced esophageal squamous cell carcinoma (LA-ESCC) have shown promising results. This multicenter, randomized, open-label phase 3 trial aimed to further assess the efficacy and safety of neoadjuvant camrelizumab plus chemotherapy followed by adjuvant camrelizumab, compared to neoadjuvant chemotherapy alone. A total of 391 patients with resectable thoracic LA-ESCC (T1b-3N1-3M0 or T3N0M0) were stratified by clinical stage (I/II, III or IVA) and randomized in a 1:1:1 ratio to undergo two cycles of neoadjuvant therapy. Treatments included camrelizumab, albumin-bound paclitaxel and cisplatin (Cam+nab-TP group; n = 132); camrelizumab, paclitaxel and cisplatin (Cam+TP group; n = 130); and paclitaxel with cisplatin (TP group; n = 129), followed by surgical resection. Both the Cam+nab-TP and Cam+TP groups also received adjuvant camrelizumab. The dual primary endpoints were the rate of pathological complete response (pCR), as evaluated by a blind independent review committee, and event-free survival (EFS), as assessed by investigators. This study reports the final analysis of pCR rates. In the intention-to-treat population, the Cam+nab-TP and Cam+TP groups exhibited significantly higher pCR rates of 28.0% and 15.4%, respectively, compared to 4.7% in the TP group (Cam+nab-TP versus TP: difference 23.5%, 95% confidence interval (CI) 15.1-32.0, P < 0.0001; Cam+TP versus TP: difference 10.9%, 95% CI 3.7-18.1, P = 0.0034). The study met its primary endpoint of pCR; however, EFS is not yet mature. The incidence of grade ≥3 treatment-related adverse events during neoadjuvant treatment was 34.1% for the Cam+nab-TP group, 29.2% for the Cam+TP group and 28.8% for the TP group; the postoperative complication rates were 34.2%, 38.8% and 32.0%, respectively. Neoadjuvant camrelizumab plus chemotherapy demonstrated superior pCR rates compared to chemotherapy alone for LA-ESCC, with a tolerable safety profile. Chinese Clinical Trial Registry identifier: ChiCTR2000040034 .

2.
BMC Womens Health ; 24(1): 357, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902677

ABSTRACT

BACKGROUND: Previous observational studies have indicated an inverse correlation between circulating sex hormone binding globulin (SHBG) levels and the incidence of polycystic ovary syndrome (PCOS). Nevertheless, conventional observational studies may be susceptible to bias. Consequently, we conducted a two-sample Mendelian randomization (MR) investigation to delve deeper into the connection between SHBG levels and the risk of PCOS. METHODS: We employed single-nucleotide polymorphisms (SNPs) linked to serum SHBG levels as instrumental variables (IVs). Genetic associations with PCOS were derived from a meta-analysis of GWAS data. Our primary analytical approach relied on the inverse-variance weighted (IVW) method, complemented by alternative MR techniques, including simple-median, weighted-median, MR-Egger regression, and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) testing. Additionally, sensitivity analyses were conducted to assess the robustness of the association. RESULTS: We utilized 289 SNPs associated with serum SHBG levels, achieving genome-wide significance, as instrumental variables (IVs). Our MR analyses revealed that genetically predicted elevated circulating SHBG concentrations were linked to a reduced risk of PCOS (odds ratio (OR) = 0.56, 95% confidence interval (CI): 0.39-0.78, P = 8.30 × 10-4) using the IVW method. MR-Egger regression did not detect any directional pleiotropic effects (P intercept = 0.626). Sensitivity analyses, employing alternative MR methods and IV sets, consistently reaffirmed our results, underscoring the robustness of our findings. CONCLUSIONS: Through a genetic epidemiological approach, we have substantiated prior observational literature, indicating a potential causal inverse relationship between serum SHBG concentrations and PCOS risk. Nevertheless, further research is needed to elucidate the underlying mechanism of SHBG in the development of PCOS.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Polycystic Ovary Syndrome , Polymorphism, Single Nucleotide , Sex Hormone-Binding Globulin , Humans , Sex Hormone-Binding Globulin/analysis , Sex Hormone-Binding Globulin/genetics , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/blood , Female , Genetic Predisposition to Disease , Risk Factors
3.
J Diabetes Metab Disord ; 23(1): 1113-1123, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932853

ABSTRACT

Aims: Despite more and more studies indicate that beverages play an important role in type 2 diabetes mellitus(T2DM), the efficacy of intaking different beverages for T2DM has not been clearly stated in one article. The meta-analysis was performed, which aims to assess the effects of beverages on mortality and cardiovascular complications in patients with type 2 diabetes and the incidence of T2DM. Method: PubMed, Embase, Web of Science and Cochrane Library databases were search up to March, 2023 to identify relevant studies, including studies researching beverage consumption, the incidence and mortality of T2DM and incidence of cardiovascular disease, a kind of complication of T2DM. The way to explore the source of heterogeneity is performing subgroup analyses and sensitivity analyses. Funnel plots and Egger's regression test were performed to assess publication bias. The Hazard ratio (HR) and 95% confidence intervals (95% CIs) were used to analysis the results. Fifteen observational studies were included in our meta-analysis. Results: Fifteen eligible articles were included sugar-sweetened beverages(SSB) consumption increased the mortality and incidence of T2DM ( Hazard ratio (HR), 1.20; 95% confidence interval (CI), 1.05-1.38; P = 0.01 and HR, 1.15; 95% CI,1.06-1.24; P = 0.001), respectively. Artificially-sweetened beverages (ASB) consumption was not associated with the mortality and incidence of T2DM (HR,0.96;95%CI, 0.86-1.07; P = 0.464 and HR, 1.15; 95% CI,1.05-1.26; P = 0.003), respectively. Fruit juice consumption increased the incidence of T2DM (HR,1.08;95%CI,1.02-1.14, P = 0.296).Tea or coffee consumption can reduce the incidence of T2DM (HR, 0.89; 95%CI,0.81-0.98; P = 0.016). Tea or coffee consumption was associated with a lower risk of mortality of T2DM (HR,0.84; 95% Cl, 0.75-0.94; P = 0.002 and HR,0.75; 95% CI, 0.65-0.87; P < 0.001), respectively. Additionally, beverage consumption was not associated with cardiovascular disease in T2DM patients (HR,1.03; 95% Cl, 0.82-1.30, P > 0.05). Conclusions: High consumption of SSBs led to a higher risk and mortality of T2DM, while high consumption of coffee or tea showed significant associations with a lower risk of the incidence and mortality of T2DM. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-024-01396-5.

4.
Cell Rep ; 43(5): 114192, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38703367

ABSTRACT

The preoptic area of the hypothalamus (POA) is essential for sleep regulation. However, the cellular makeup of the POA is heterogeneous, and the molecular identities of the sleep-promoting cells remain elusive. To address this question, this study compares mice during recovery sleep following sleep deprivation to mice allowed extended sleep. Single-nucleus RNA sequencing (single-nucleus RNA-seq) identifies one galanin inhibitory neuronal subtype that shows upregulation of rapid and delayed activity-regulated genes during recovery sleep. This cell type expresses higher levels of growth hormone receptor and lower levels of estrogen receptor compared to other galanin subtypes. single-nucleus RNA-seq also reveals cell-type-specific upregulation of purinergic receptor (P2ry14) and serotonin receptor (Htr2a) during recovery sleep in this neuronal subtype, suggesting possible mechanisms for sleep regulation. Studies with RNAscope validate the single-nucleus RNA-seq findings. Thus, the combined use of single-nucleus RNA-seq and activity-regulated genes identifies a neuronal subtype functionally involved in sleep regulation.


Subject(s)
Galanin , Neurons , Preoptic Area , Sleep Deprivation , Animals , Galanin/metabolism , Galanin/genetics , Neurons/metabolism , Preoptic Area/metabolism , Mice , Sleep Deprivation/metabolism , Sleep Deprivation/genetics , Male , RNA-Seq , Mice, Inbred C57BL , Sleep/genetics , Sleep/physiology , Single-Cell Analysis
5.
J Am Chem Soc ; 146(22): 15108-15118, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38695683

ABSTRACT

P2-type Na2/3Ni1/3Mn2/3O2 (PNNMO) has been extensively studied because of its desirable electrochemical properties as a positive electrode for sodium-ion batteries. PNNMO exhibits intralayer transition-metal ordering of Ni and Mn and intralayer Na+/vacancy ordering. The Na+/vacancy ordering is often considered a major impediment to fast Na+ transport and can be affected by transition-metal ordering. We show by neutron/X-ray diffraction and density functional theory (DFT) calculations that Li doping (Na2/3Li0.05Ni1/3Mn2/3O2, LFN5) promotes ABC-type interplanar Ni/Mn ordering without disrupting the Na+/vacancy ordering and creates low-energy Li-Mn-coordinated diffusion pathways. A structure model is developed to quantitatively identify both the intralayer cation mixing and interlayer cationic stacking fault densities. Quasielastic neutron scattering reveals that the Na+ diffusivity in LFN5 is enhanced by an order of magnitude over PNNMO, increasing its capacity at a high current. Na2/3Ni1/4Mn3/4O2 (NM13) lacks Na+/vacancy ordering but has diffusivity comparable to that of LFN5. However, NM13 has the smallest capacity at a high current. The high site energy of Mn-Mn-coordinated Na compared to that of Ni-Mn and higher density of Mn-Mn-coordinated Na+ sites in NM13 disrupts the connectivity of low-energy Ni-Mn-coordinated diffusion pathways. These results suggest that the interlayer ordering can be tuned through the control of composition, which has an equal or greater impact on Na+ diffusion than the Na+/vacancy ordering.

6.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731834

ABSTRACT

Tripartite motif (TRIM) proteins are a multifunctional E3 ubiquitin ligase family that participates in various cellular processes. Recent studies have shown that TRIM proteins play important roles in regulating host-virus interactions through specific pathways, but their involvement in response to rabies virus (RABV) infection remains poorly understood. Here, we identified that several TRIM proteins are upregulated in mouse neuroblastoma cells (NA) after infection with the rabies virus using RNA-seq sequencing. Among them, TRIM44 was found to regulate RABV replication. This is supported by the observations that downregulation of TRIM44 inhibits RABV replication, while overexpression of TRIM44 promotes RABV replication. Mechanistically, TRIM44-induced RABV replication is brought about by activating autophagy, as inhibition of autophagy with 3-MA attenuates TRIM44-induced RABV replication. Additionally, we found that inhibition of autophagy with rapamycin reverses the TRIM44-knockdown-induced decrease in LC3B expression and autophagosome formation as well as RABV replication. The results suggest that TRIM44 promotes RABV replication by an autophagy-dependent mechanism. Our work identifies TRIM44 as a key host factor for RABV replication, and targeting TRIM44 expression may represent an effective therapeutic strategy.


Subject(s)
Autophagy , Rabies virus , Tripartite Motif Proteins , Virus Replication , Animals , Humans , Mice , Autophagy/genetics , Cell Line, Tumor , Host-Pathogen Interactions , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Rabies/virology , Rabies/metabolism , Rabies virus/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics
7.
Small ; : e2402685, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770745

ABSTRACT

Designing novel materials is greatly dependent on understanding the design principles, physical mechanisms, and modeling methods of material microstructures, requiring experienced designers with expertise and several rounds of trial and error. Although recent advances in deep generative networks have enabled the inverse design of material microstructures, most studies involve property-conditional generation and focus on a specific type of structure, resulting in limited generation diversity and poor human-computer interaction. In this study, a pioneering text-to-microstructure deep generative network (Txt2Microstruct-Net) is proposed that enables the generation of 3D material microstructures directly from text prompts without additional optimization procedures. The Txt2Microstruct-Net model is trained on a large microstructure-caption paired dataset that is extensible using the algorithms provided. Moreover, the model is sufficiently flexible to generate different geometric representations, such as voxels and point clouds. The model's performance is also demonstrated in the inverse design of material microstructures and metamaterials. It has promising potential for interactive microstructure design when associated with large language models and could be a user-friendly tool for material design and discovery.

8.
Anal Bioanal Chem ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613683

ABSTRACT

The development of cost-effective and highly efficient electrocatalysts is critical to help electrochemical non-enzymatic sensors achieve high performance. Here, a new class of catalyst, Ru single atoms confined on Cu nanotubes as a single-atom alloy (Ru1Cu NTs), with a unique electronic structure and property, was developed to construct a novel electrochemical non-enzymatic glucose sensor for the first time. The Ru1Cu NTs with a diameter of about 24.0 nm showed a much lower oxidation potential (0.38 V) and 9.0-fold higher response (66.5 µA) current than Cu nanowires (Cu NWs, oxidation potential 0.47 V and current 7.4 µA) for glucose electrocatalysis. Moreover, as an electrochemical non-enzymatic glucose sensor, Ru1Cu NTs not only exhibited twofold higher sensitivity (54.9 µA mM-1 cm-2) and wider linear range (0.5-8 mM) than Cu NWs, but also showed a low detection limit (5.0 µM), excellent selectivity, and great stability. According to theoretical calculation results, the outstanding catalytic and sensing performance of Ru1Cu NTs could be ascribed to the upshift of the d-band center that helped promote glucose adsorption. This work presents a new avenue for developing highly active catalysts for electrochemical non-enzymatic sensors.

9.
ISA Trans ; 149: 325-336, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599928

ABSTRACT

This paper introduces a new spherical motion generator and presents a method for modeling its magnetic field and analyzing its moments. The generator employs an electromagnetic drive of a spherical motor as its driving method and utilizes a spherical parallel manipulator to execute the spherical motion. The combination of these two technologies offers several advantages, including a large workspace and high motion accuracy. The equivalent magnetizing current method is used in the magnetic field modeling and the average air-gap flux density is optimized to achieve a better magnetic field distribution, and the accuracy of the analytical model is verified by finite element simulations and experiments.

10.
Adv Mater ; : e2313747, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685565

ABSTRACT

Recovering platinum group metals from secondary resources is crucial to meet the growing demand for high-tech applications. Various techniques are explored, and adsorption using porous materials has emerged as a promising technology due to its efficient performance and environmental beingness. However, the challenge lies in effectively recovering and separating individual platinum group metals (PGMs) given their similar chemical properties. Herein, a breakthrough approach is presented by sophisticatedly tailoring the coordination micro-environment in a series of aminopyridine-based porous organic polymers, which enables the creation of platinum-specific nanotraps for efficient separation of binary PGMs (platinum/palladium). The newly synthesized POP-o2NH2-Py demonstrates record uptakes and selectivity toward platinum over palladium, with the amino groups adjacent to the pyridine moieties being vital in improving platinum binding performance. Further breakthrough experiments underline its remarkable ability to separate platinum and palladium. Spectroscopic analysis reveals that POP-o2NH2-Py offers a more favorable coordination fashion to platinum ions compared to palladium ions owing to the greater interaction between N and Pt4+ and stronger intramolecular hydrogen bonding between the amino groups and four coordinating chlorines at platinum. These findings underscore the importance of fine-tuning the coordination micro-environment of nanotraps through subtle modifications that can greatly enhance the selectivity toward the desired metal ions.

11.
ACS Appl Mater Interfaces ; 16(17): 22512-22521, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38651627

ABSTRACT

Gold-sulfur interaction has vital importance in nanotechnologies and material chemistry to design functional nanoparticles, self-assembled monolayers, or molecular complexes. In this paper, a mixture of only two basic precursors, such as the chloroauric acid (HAu(III)Cl4) and a thiol molecule (p-fluorothiophenol (p-HSPhF)), are used for the synthesis of gold(I)-thiolate coordination polymers. Under different conditions of synthesis and external stimuli, five different functional materials with different states of [Au(I)(p-SPhF)]n can be afforded. These gold-thiolate compounds are (i) red emissive, flexible, and crystalline fibers; (ii) composite materials made of these red emissive fibers and gold nanoparticles; (iii) amorphous phase; (iv) transparent glass; and (v) amorphous-to-crystalline phase-change material associated with an ON/OFF switch of luminescence. The different functionalities of these materials highlight the great versatility of the gold(I) thiolate coordination polymers with easy synthesis and diverse shaping that may have great potential as sustainable phosphors, smart textiles, sensors, and phase change memories.

12.
Org Lett ; 26(15): 3135-3139, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38563556

ABSTRACT

Herein, we present the first racemic total synthesis of the structurally complex monoterpene indole alkaloids rhynchines A-E, starting from commercially available methyl nicotinate and 3-(2-bromoethyl)-1H-indole. The success of our synthesis is attributed to the utilization of a bioinspired synthetic strategy, which facilitated the rapid construction of the pentacyclic core skeleton of the target molecules through biomimetic skeletal rearrangement and late-stage C-H oxidative cyclization. Additionally, silica-gel-promoted tautomerization played a crucial role as a strategic element in the chemical synthesis of rhynchines A and B.

13.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 356-362, 2024 Mar 10.
Article in Chinese | MEDLINE | ID: mdl-38448029

ABSTRACT

OBJECTIVE: To report on a case of Kabuki syndrome (KS) due to a novel variant of KMT2D gene. METHODS: A child diagnosed with KS at the Fujian Children's Hospital on July 25, 2022 was selected as the study subject. Whole exome sequencing was carried out for the child and her parents. Candidate variant was validated by Sanger sequencing and bioinformatic analysis. RESULTS: The child, a 4-month-old female, had presented with distinctive facial features, growth retardation, cardiac malformations, horseshoe kidney, hypothyroidism, and recurrent aspiration pneumonia. Whole exome sequencing revealed that she has harbored a heterozygous c.6285dup (p.Lys2096Ter) variant of the KMT2D gene. Sanger sequencing confirmed that neither of her parents had carried the same variant. The variant was previously unreported and may result in a truncated protein and loss of an enzymatic activity region. The corresponding site of the variant is highly conserved. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was classified as pathogenic (PVS1+PS2+PM2_Supporting). CONCLUSION: The c.6285dup variant of the KMT2D gene probably underlay the KS in this child.


Subject(s)
Abnormalities, Multiple , Face , Hematologic Diseases , Vestibular Diseases , Female , Humans , Infant , Abnormalities, Multiple/genetics , Computational Biology , Face/abnormalities , Genomics , Heterozygote
14.
CNS Neurosci Ther ; 30(3): e14671, 2024 03.
Article in English | MEDLINE | ID: mdl-38459658

ABSTRACT

BACKGROUND: With the widespread prevalence of neurodegenerative diseases (NDs) and high rates of mortality and disability, it is imminent to find accurate targets for intervention. There is growing evidence that neuroimmunity is pivotal in the pathology of NDs and that interventions targeting neuroimmunity hold great promise. Exogenous or dislocated nucleic acids activate the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS), activating the stimulator of interferon genes (STING). The activated STING triggers innate immune responses and then the cGAS-STING signaling pathway links abnormal nucleic acid sensing to the immune response. Recently, numerous studies have shown that neuroinflammation regulated by cGAS-STING signaling plays an essential role in NDs. AIMS: In this review, we summarized the mechanism of cGAS-STING signaling in NDs and focused on inhibitors targeting cGAS-STING. CONCLUSION: The cGAS-STING signaling plays an important role in the pathogenesis of NDs. Inhibiting the cGAS-STING signaling may provide new measures in the treatment of NDs.


Subject(s)
Neurodegenerative Diseases , Humans , DNA/genetics , DNA/metabolism , Immunity, Innate , Neurodegenerative Diseases/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Signal Transduction/physiology
15.
Dalton Trans ; 53(14): 6224-6233, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38488116

ABSTRACT

Density functional theory plus Hubbard U (DFT+U) methodology was used to calculate the structures and energetic landscapes of CeSiO4, including its stetindite and scheelite phases from ambient pressure to ∼24 GPa. To ensure accurate simulations of the high-pressure structures, assessments of strain-stress methods and stress-strain methods were conducted in prior, with the former found to have a better agreement with the experimental result. From DFT calculations the equation of states (EOS) of both stetindite and scheelite were further obtained, with the fitted bulk moduli being 182(2) GPa and 190.0(12) GPa, respectively. These results were found to be consistent with the experimental values of 177(5) GPa and 222(40) GPa. Furthermore, the calculated energetics suggest that the stetindite structure is more thermodynamically stable than the scheelite structure at a pressure lower than 8.35 GPa. However, the stetindite → scheelite phase transition was observed experimentally at a much higher pressure of ∼15 GPa. A further phonon spectra investigation by the density functional perturbation theory (DFPT) indicated the Eg1 mode is being softened with pressure and becomes imaginary after 12 GPa, which is a sign of the lattice instability. Consequently, it was concluded that the stetindite → scheelite transition is predominantly initiated by the lattice instability under high-pressure.

16.
Angew Chem Int Ed Engl ; 63(22): e202402931, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38527934

ABSTRACT

Herein, we present a unified chemical synthesis of three subgroups of cephalotaxus diterpenoids. Key to the success lies in adopting a synthetic strategy that is inspired by biosynthesis but is opposite in nature. By employing selective one-carbon introduction and ring expansion operations, we have successfully converted cephalotane-type C18 dinorditerpenoids (using cephanolide B as a starting material) into troponoid-type C19 norditerpenoids and intact cephalotane-type C20 diterpenoids. This synthetic approach has enabled us to synthesize cephinoid H, 13-oxo-cephinoid H, 7-oxo-cephinoid H, fortalpinoid C, 7-epi-fortalpinoid C, cephanolide E, and 13-epi-cephanolide E. Furthermore, through the development of an intermolecular asymmetric Michael reaction between ß-oxo esters and ß-substituted enones, we have achieved the enantioselective synthesis of advanced intermediates within our synthetic sequence, thus formally realizing the asymmetric total synthesis of the cephalotaxus diterpenoids family.


Subject(s)
Cephalotaxus , Diterpenes , Diterpenes/chemical synthesis , Diterpenes/chemistry , Cephalotaxus/chemistry , Molecular Structure , Stereoisomerism
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123970, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38324947

ABSTRACT

A mitochondria-targeted ratiometric fluorescent sensor (Mito-Si-NA) for formaldehyde (FA) has been constructed by functionalizing silica-based nanodots (silica-based ND). As the fluorescence reference and carrier, the silica-based ND conjugate with small molecule probe for FA via covalent. Further modifying with mitochondria targeting moiety enables the sensor to specifically target mitochondria. In the presence of FA, the emission of silica-based ND remain constant to act as an internal reference (445 nm) while the response signal of small molecule probe was gradually enhanced (545 nm). This sensor exhibits excellent selectivity towards FA with great changes of fluorescence intensity ratio values (I545/I445). The FA ratiometric fluorescence imaging in mitochondria was achieved successfully. In addition, the sensor was also successfully used for imaging FA in zebrafish. The good performance of Mito-Si-NA for FA bioimaging confirms that Mito-Si-NA is an appealing imaging tool to monitor FA in mitochondria and shows great potential to study the functions of FA on mitochondria.


Subject(s)
Fluorescent Dyes , Zebrafish , Animals , Humans , Naphthalimides , Mitochondria , Optical Imaging , Formaldehyde , HeLa Cells
18.
Genes (Basel) ; 15(2)2024 01 26.
Article in English | MEDLINE | ID: mdl-38397155

ABSTRACT

Porcine epidemic diarrhea (PED) virus (PEDV) is one of the main pathogens causing diarrhea in piglets and fattening pigs. The clinical signs of PED are vomiting, acute diarrhea, dehydration, and mortality resulting in significant economic losses and becoming a major challenge in the pig industry. PEDV possesses various crucial structural and functional proteins, which play important roles in viral structure, infection, replication, assembly, and release, as well as in escaping host innate immunity. Over the past few years, there has been progress in the study of PEDV pathogenesis, revealing the crucial role of the interaction between PEDV viral proteins and host cytokines in PEDV infection. At present, the main control measure against PEDV is vaccine immunization of sows, but the protective effect for emerging virus strains is still insufficient, and there is no ideal safe and efficient vaccine. Although scientists have persistently delved their research into the intricate structure and functionalities of the PEDV genome and viral proteins for years, the pathogenic mechanism of PEDV remains incompletely elucidated. Here, we focus on reviewing the research progress of PEDV structural and nonstructural proteins to facilitate the understanding of biological processes such as PEDV infection and pathogenesis.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Vaccines , Animals , Swine , Female , Coronavirus Infections/veterinary , Viral Proteins , Diarrhea/veterinary
19.
Nanoscale ; 16(10): 5421-5432, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38385242

ABSTRACT

Nanocrystalline pyrochlore materials have been investigated for their enhanced radiation tolerance as ceramic nuclear waste hosts. In this work, we study the thermodynamic driving force of nano-scale materials for radiation resistance. The size dependent thermodynamic properties of a series of Y2Ti2O7 nanoparticles were investigated. Samples were synthesized by a sol-gel method and characterized by synchrotron X-ray diffraction, BET analysis, and thermogravimetric analysis. The surface and interface enthalpies of Y2Ti2O7 were determined by high temperature oxide melt drop solution calorimetry to be 4.07 J m-2 and 3.04 J m-2, respectively. The experimentally obtained surface energy is in good agreement with computationally derived average surface energies for yttrium and other rare-earth titanate pyrochlores. Theoretical links between nanoparticle stability, surface energy, and radiation resistance of pyrochlore materials were then explored.

20.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38236299

ABSTRACT

Molten salt reactors (MSRs) are a promising alternative to conventional nuclear reactors as they may offer more efficient fuel utilization, lower waste generation, and improved safety. The state of knowledge of the properties of liquid salts is far from complete. In order to develop the MSR concept, it is essential to develop a fundamental understanding of the thermodynamic properties, including the heat capacities (Cp) and enthalpies of mixing (ΔHmix), of molten salts at MSR operating conditions. Historically, the Cp values of molten salts were determined by drop-calorimetry or differential scanning calorimetry, whereas their ΔHmix values were typically measured using specialized high temperature calorimeters. In this work, a new methodology for measuring both the Cp and the ΔHmix of molten chloride salts was developed. This novel method involves sealing a chloride salt sample in a nickel capsule and performing conventional transposed temperature drop calorimetry using a commercially available Setaram AlexSYS-800 Tian-Calvet twin microcalorimeter. This methodology may be applied to calorimetric measurements of more complex salt mixtures, especially mixtures containing actinides and fission products.

SELECTION OF CITATIONS
SEARCH DETAIL
...