Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175730

ABSTRACT

Climate change has caused high salinity in many fields, particularly in the mud flats in coastal regions. The resulting salinity has become one of the most significant abiotic stresses affecting the world's rice crop productivity. Developing elite cultivars with novel salinity-tolerance traits is regarded as the most cost-effective and environmentally friendly approach for utilizing saline-alkali land. To develop a highly efficient green strategy and create novel rice germplasms for salt-tolerant rice breeding, this study aimed to improve rice salinity tolerance by combining targeted CRISPR/Cas9-mediated editing of the OsRR22 gene with heterosis utilization. The novel alleles of the genic male-sterility (GMS) and elite restorer line (733Srr22-T1447-1 and HZrr22-T1349-3) produced 110 and 1 bp deletions at the third exon of OsRR22 and conferred a high level of salinity tolerance. Homozygous transgene-free progeny were identified via segregation in the T2 generation, with osrr22 showing similar agronomic performance to wild-type (733S and HZ). Furthermore, these two osrr22 lines were used to develop a new promising third-generation hybrid rice line with novel salinity tolerance. Overall, the results demonstrate that combining CRISPR/Cas9 targeted gene editing with the "third-generation hybrid rice system" approach allows for the efficient development of novel hybrid rice varieties that exhibit a high level of salinity tolerance, thereby ensuring improved cultivar stability and enhanced rice productivity.


Subject(s)
Gene Editing , Oryza , CRISPR-Cas Systems/genetics , Oryza/genetics , Salinity , Plant Breeding/methods
2.
Ecotoxicol Environ Saf ; 254: 114697, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36889210

ABSTRACT

Advanced oxidation processes (AOPs) are a class of highly efficient pollution remediation technologies that produce oxidising radicals under specific conditions to degrade organic pollutants. The Fenton reaction is a commonly applied AOP. To combine the advantages of AOPs and biodegradation in the remediation of organic pollutants, some studies have developed coupled systems between Fenton AOPs and white rot fungi (WRF) for environmental organic pollutant remediation and have achieved some success. Moreover, a promising system, termed as advanced bio-oxidation processes (ABOPs), mediated by the quinone redox cycling of WRF, has attracted increasing attention in the field. In this ABOP system, the radicals and H2O2 produced through the quinone redox cycling of WRF can strengthen Fenton reaction. Meanwhile, in this process, the reduction of Fe3+ to Fe2+ ensures the maintenance of Fenton reaction, leading to a promising application potential for the remediation of environmental organic pollutants. ABOPs combine the advantages of bioremediation and advanced oxidation remediation. Further understanding the coupling of Fenton reaction and WRF in the degradation of organic pollutants will be of great significance for the remediation of organic pollutants. Therefore, in this study, we reviewed recent remediation techniques for organic pollutants involving the coupled application of WRF and the Fenton reaction, focusing on the application of new ABOPs mediated by WRF, and discussed the reaction mechanism and conditions of ABOPs. Finally, we discussed the application prospects and future research directions of the joint application of WRF and advanced oxidation technologies for the remediation of environmental organic pollutants.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Water Pollutants, Chemical , Hydrogen Peroxide , Oxidation-Reduction , Fungi/metabolism , Water Pollutants, Chemical/metabolism
3.
Bioinformation ; 15(7): 480-489, 2019.
Article in English | MEDLINE | ID: mdl-31485134

ABSTRACT

Drought is one of the major abiotic stresses causing yield losses and restricted growing area for several major crops. Rice being a major staple food crop and sensitive to water-deficit conditions bears heavy yield losses due to drought stress. To breed drought tolerant rice cultivars, it is of interest to understand the mechanisms of drought tolerance. In this regard, large amount of publicly available transcriptome datasets could be utilized. In this study, we used different transcriptome datasets obtained under drought stress in comparison to normal conditions (control) to identify novel drought responsive genes and their underlying molecular mechanisms. We found 517 core drought responsive differentially expressed genes (DEGs) and different modules using gene co-expression analysis to specifically predict their biological roles in drought tolerance. Gene ontology and KEGG analyses showed key biological processes and metabolic pathways involved in drought tolerance. Further, network analysis pinpointed important hub DEGs and major transcription factors regulating the expression of drought responsive genes in each module. These identified novel DEGs and transcription factors could be functionally characterized using systems biology approaches, which can significantly enhance our knowledge about the molecular mechanisms of drought tolerance in rice.

SELECTION OF CITATIONS
SEARCH DETAIL
...