Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Arch Insect Biochem Physiol ; 115(1): e22082, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38288492

ABSTRACT

Bombyx mori bidensovirus (BmBDV) is one of the most important pathogens of silkworm. It mainly infects midgut cells of silkworm and causes losses to the sericulture industry. Long noncoding RNAs (lncRNAs) have been reported to play an important role in the regulation of antiviral immune response in silkworm. To explore whether lncRNAs are involved in BmBDV infection and immune response of silkworm, we performed a comparative transcriptome analysis to identify the lncRNAs and mRNAs between the BmBDV infected and noninfected silkworm larvae at the early stage. A total of 16,069 genes and 974 candidate lncRNAs were identified, among which 142 messenger RNA (mRNAs) and four lncRNAs were differentially expressed (DE). Target gene prediction revealed that 142 DEmRNAs were coexpressed with four DElncRNAs, suggesting that the expression of mRNA is mainly affected through trans-regulation activities. A regulatory network of DElncRNAs and DEmRNAs was constructed, showing that many genes targeted by different DElncRNAs are involved in metabolism and immunity, which implies that these genes and lncRNAs play an important role in the replication of BmBDV. Our results will help us to improve our understanding of lncRNA-mediated regulatory roles in BmBDV infection, providing a new perspective for further exploring the interaction between host and BmBDV.


Subject(s)
Bombyx , Insect Viruses , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , Insect Viruses/genetics , Gene Expression Profiling
2.
Cell Host Microbe ; 31(12): 2051-2066.e7, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37977141

ABSTRACT

Pattern-recognition receptors (PRRs) mediate basal resistance to most phytopathogens. However, plant responses can be cell type specific, and the mechanisms governing xylem immunity remain largely unknown. We show that the lectin-receptor-like kinase LORE contributes to xylem basal resistance in Arabidopsis upon infection with Ralstonia solanacearum, a destructive plant pathogen that colonizes the xylem to cause bacterial wilt. Following R. solanacearum infection, LORE is activated by phosphorylation at residue S761, initiating a phosphorelay that activates reactive oxygen species production and cell wall lignification. To prevent prolonged activation of immune signaling, LORE recruits and phosphorylates type 2C protein phosphatase LOPP, which dephosphorylates LORE and attenuates LORE-mediated xylem immunity to maintain immune homeostasis. A LOPP knockout confers resistance against bacterial wilt disease in Arabidopsis and tomatoes without impacting plant growth. Thus, our study reveals a regulatory mechanism in xylem immunity involving the reversible phosphorylation of receptor-like kinases.


Subject(s)
Arabidopsis , Receptors, Mitogen , Phosphorylation , Xylem/microbiology , Lectins , Plant Diseases , Plant Immunity
3.
Dev Comp Immunol ; 142: 104667, 2023 05.
Article in English | MEDLINE | ID: mdl-36773793

ABSTRACT

As a highly infectious pathogen, Bombyx mori nuclear polyhedrosis virus (BmNPV) has a high lethality rate in silkworm. Our previous study have confirmed that Hsp90 plays a positive role in BmNPV proliferation and Hsp90 inhibitor, geldanamycin (GA) can decrease the replication of BmNPV in vitro. However, its molecular mechanism is not fully understood. In the present study, first, we found that GA could inhibit the proliferation of BmNPV in a dose-dependent manner and delay the pathogenesis of BmNPV in vivo possibly by altering the transcript level of genes associated with cell apoptosis and immune pathways. Furthermore, by immunoprecipitation (IP) and mass spectrometry analysis, we identified a series of proteins potentially interacting with Hsp90 including two BmNPV encoded proteins. Subsequently, by Co-IP we confirmed the interaction between BmActin-4 and BmHsp90. Knocking down Bmhsp90 by small interfering RNA inhibited the protein expression level of BmActin-4. Over-expression of Bmactin-4 promoted the replication of BmNPV whereas knockdown of Bmactin-4 suppressed BmNPV replication. In addition, decrease of the transcript level of Bmhsp90 in Bmactin-4 knocking down BmN cells was also detected. Taken together, BmHsp90 can interact with BmActin-4 and promote its expression, thereby promoting BmNPV proliferation. Our findings may enrich the molecular mechanism of Hsp90 for promoting virus proliferation and provide new clues to elucidate the interact mechanism between silkworm and virus.


Subject(s)
Bombyx , Nucleopolyhedroviruses , Animals , Actins/metabolism , Nucleopolyhedroviruses/genetics , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Cell Proliferation
4.
Dev Comp Immunol ; 131: 104382, 2022 06.
Article in English | MEDLINE | ID: mdl-35245604

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that function as novel gene expression regulators at the post-transcriptional level. Not with standing that the biogenesis and function of miRNAs are well-understood in eukaryotes, little is known about RNA virus-encoded miRNAs. Bombyx mori cypovirus (BmCPV) is a double-stranded RNA virus with a segmented genome that causes cytoplasmic polyhedrosis disease in silkworm larvae. To date, the interaction between BmCPV and silkworm remains largely unclear. 22 candidate BmCPV-encoded miRNAs were identified in this study through small RNA sequencing, stem-loop RT-PCR and qRT-PCR. Then, generation and function analyses were conducted on one of the candidate miRNAs, BmCPV-miR-1, in the BmN cells and the silkworm larvae by RNA interference, quantitative PCR, dual-luciferase assay. Our results revealed that BmCPV-miR-1 was encoded by BmCPV genome RNA rather than the degraded fragments of the viral genome. Its generation depended on Dicer-1 and might also be correlated with Dicer-2, Argonaute-1 and Argonaute-2. Moreover, BmCPV-miR-1 could suppress the expression of the target gene, B. mori inhibitor of nuclear factor kappa-B kinase subunit beta (BmIKKß), via binding to the target mRNA 3'-untranslated region, which fine-tuned the host NF-κB signaling pathway and consequently enhanced viral replication. Our results provide new evidence supporting the hypothesis that RNA viruses could generate miRNAs to modulate antiviral host defense.


Subject(s)
Bombyx , MicroRNAs , Reoviridae , Animals , Host-Pathogen Interactions , Larva/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/metabolism , Reoviridae/physiology , Virus Replication
5.
Arch Insect Biochem Physiol ; 110(1): e21880, 2022 May.
Article in English | MEDLINE | ID: mdl-35191078

ABSTRACT

Bombyx mori nuclear polyhedrosis virus (BmNPV) is one of several viruses that cause great harm to the sericulture industry, and its pathogenic mechanism is still being explored. Geldanamycin (GA), a kind of HSP90 inhibitor, has been verified to suppress BmNPV proliferation. However, the molecular mechanism by which GA inhibits BmNPV is unclear. MicroRNAs (miRNAs) have been shown to play a key role in regulating virus proliferation and host-pathogen interactions. In this study, BmN cells infected with BmNPV were treated by GA and DMSO for 72 h, respectively, then transcriptome analysis of miRNA was performed from the GA group and the control group. As a result, a total of 29 miRNAs were differentially expressed (DE), with 13 upregulated and 16 downregulated. Using bioinformatics analysis, it was found that the target genes of DEmiRNAs were involved in ubiquitin-mediated proteolysis, phagosome, proteasome, endocytosis pathways, and so on. Six DEmiRNAs were verified by quantitative reverse-transcription polymerase chain reaction. DElong noncoding RNA (DElncRNA)-DEmiRNA-messenger RNA (mRNA) regulatory networks involved in apoptosis and immune pathways were constructed in GA-treated BmN cells, which included 12 DEmiRNA, 132 DElncRNA, and 69 mRNAs. This regulatory network enriched the functional role of miRNA in the BmNPV-silkworm interactions and improved our understanding of the molecular mechanism of HSP90 inhibitors on BmNPV proliferation.


Subject(s)
Bombyx , MicroRNAs , Nucleopolyhedroviruses , Animals , Benzoquinones , Bombyx/metabolism , Lactams, Macrocyclic , MicroRNAs/genetics , MicroRNAs/metabolism , Nucleopolyhedroviruses/physiology , RNA, Messenger/metabolism , Transcriptome
6.
Ecotoxicol Environ Saf ; 227: 112915, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34687943

ABSTRACT

In a previous study, silkworm larvae were used as a novel model to assess the biotoxicity of ILs, which showed that ILs could cause significant physiological and biochemical changes in midguts and silk glands of the larvae, and result in the death of larvae. In order to investigate the toxicity of 1-octyl-3-methylimidazole chloride ([C8mim]Cl) to the larvae at molecular level, RNA-sequencing technology was used to construct transcriptomic profiles of midguts and silk glands in this work. Results showed that a lot of differentially expressed genes (DEGs) were effectively screened out through bioinformatics software based on the transcriptome data and reference genome. To give more detail, 5118 and 2211 DEGs (926 and 822 DEGs) were obtained in the midguts (silk glands) when the larvae were exposed to [C8mim]Cl for 6 and 12 h, respectively, relative to the controls. In addition, gene ontology (GO) analysis suggested that the DEGs could be divided into three categories (i.e., biological process, cellular component, and molecular function), and were involved in multiple organelle functions and complex biological processes. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that the DEGs were enriched in a variety of pathways, such as signal transduction, apoptosis, glycolysis, peroxisome, autophagy, hippo signaling pathway, arginine and proline metabolism. Results of quantitative real-time PCR and histopathological observation indicated that molecular mechanism of the larvae against [C8mim]Cl toxicology may be attributed to cell apoptosis regulation via both the mitochondrial pathway and the death receptor-initiated pathway. Thus, these results provided useful data for exploring the toxicity of ILs to insects at molecular level.


Subject(s)
Bombyx , Animals , Bombyx/genetics , Chlorides , Gene Expression Profiling , Silk/genetics , Transcriptome
7.
Front Physiol ; 12: 663482, 2021.
Article in English | MEDLINE | ID: mdl-34421632

ABSTRACT

microRNA (miRNA) plays important roles in regulating various biological processes, including host-pathogen interaction. Recent studies have demonstrated that virus-encoded miRNAs can manipulate host gene expression to ensure viral effective multiplication. Bombyx mori cypovirus (BmCPV), a double-stranded RNA virus with a segmented genome, is one of the important pathogens for the economically important insect silkworm. Our present study indicated that two putative miRNAs encoded by BmCPV could promote viral replication by inhibiting the gene expression of B. mori GTP-binding nuclear protein Ran (BmRan), an essential component of the exportin-5-mediated nucleocytoplasmic transport of small RNAs. BmCPV-miR-1 and BmCPV-miR-3 are two of the BmCPV-encoded miRNAs identified in our previous studies. BmRan is a common target gene of them with binding sites all located in the 3'-untranslated region (3'-UTR) of its mRNA. The expression levels of the two miRNAs in the midgut of larvae infected with BmCPV gradually increased with the advance of infection, while the expression of the target gene BmRan decreased gradually. The miRNAs and the recombinant target gene consisting of reporter gene mCherry and 3'-UTR of BmRan mRNA were expressed in HEK293T cells for validating the interaction between the miRNAs and the target gene. qRT-PCR results revealed that BmCPV-miR-1 and BmCPV-miR-3 negatively regulate target gene expression not only separately but also cooperatively by binding to the 3'-UTR of BmRan mRNA. By transfecting miRNA mimics into BmN cells and injecting the mimics into the body of silkworm larvae, it was indicated that both BmCPV-miR-1 and BmCPV-miR-3 could repress the expression of BmRan in BmN cells and in the silkworm, and the cooperative action of the two miRNAs could enhance the repression of BmRan expression. Furthermore, the repression of BmRan could facilitate the replication of BmCPV genomic RNAs. It is speculated that BmCPV-miR-1 and BmCPV-miR-3 might reduce the generation of host miRNAs by inhibiting expression of BmRan, thus creating a favorable intracellular environment for virus replication. Our results are helpful to better understand the pathogenic mechanism of BmCPV to the silkworm, and provide insights into one of the evasion strategies used by viruses to counter the host defense for their effective multiplication.

8.
J Invertebr Pathol ; 184: 107647, 2021 09.
Article in English | MEDLINE | ID: mdl-34303711

ABSTRACT

Insect Apolipophorin-III is a multifunctional protein and also plays an important role in insect innate immunity. Early transcriptome and proteome studies indicated that the gene expression level of Bombyx mori Apolipophorin-III (BmApoLp-III) in silkworm larvae infected with Beauveria bassiana was significantly up-regulated. In this study, BmApoLp-III gene was cloned, its expression patterns in different larval tissues investigated, the BmApoLp-III protein was successfully expressed with prokaryotic expression system and its antifungal effect was verified. The results showed that the BmApoLp-III gene was expressed in all the tested tissues of the 5th instar larvae infected by B. bassiana, with the highest expression in fat body. The fungistatic zone test showed that the recombinant BmApoLp-III has a significant antifungal effect on B. bassiana. Injecting purified BmApoLp-III to the larvae delayed the onset and death of the infected larvae. Conversely, silencing BmApoLp-III gene by RNAi resulted in early morbidity and death of the infected larvae. At the same time, injecting BmApoLp-III up-regulated the expression of genes including BmßGRP4 and BmMyd88 in the Toll signaling pathway, BmCTL5 and BmHOP in the Jak/STAT signaling pathway, serine proteinase inhibitor BmSerpin5, and antimicrobial peptide BmCecA, but down-regulated the expression of BmTak1 of Imd signaling pathway; while silencing BmApoLp-III gene down-regulated the expression of BmßGRP1 and BmSpaetzle, BmCTL5 and BmHOP, BmSerpin2 and BmSerpin5, BmBAEE and BmPPO2 of relevant pathways and BmCecA, but up-regulated the expression of BmPGRP-Lc and BmTak1 of Imd pathway. These results indicate that the BmApoLp-III could not only directly inhibit B. bassiana, but also participate in regulation of the expression of immune signaling pathway related genes, promote the expression of immune effectors, and indirectly inhibit the reproduction of B. bassiana in the silkworm.


Subject(s)
Apolipoproteins/genetics , Beauveria/physiology , Bombyx/genetics , Host-Pathogen Interactions , Immunity, Innate/genetics , Insect Proteins/genetics , Up-Regulation/immunology , Animals , Apolipoproteins/metabolism , Bombyx/growth & development , Bombyx/immunology , Bombyx/microbiology , Gene Expression Regulation, Fungal , Insect Proteins/metabolism , Larva/genetics , Larva/growth & development , Larva/immunology , Larva/microbiology , Signal Transduction
9.
Mol Immunol ; 135: 204-216, 2021 07.
Article in English | MEDLINE | ID: mdl-33930715

ABSTRACT

Beauveria bassiana is a harmful pathogen to the economically important insect silkworm, always causes serious disease to the silkworm, which results in great losses to the sericulture industry. In order to explore the silkworm (Bombyx mori) response to B. bassiana infection, differential proteomes of the silkworm responsive to B. bassiana infection were identified with isobaric tags for relative and absolute quantitation (iTRAQ) at the different stage of the 3rd instar silkworm larvae. Among the 5040 proteins identified with confidence level of ≥95 %, total 937 proteins were differentially expressed, of which 488 proteins were up-regulated and 449 proteins were down-regulated. 23, 15, 250, 649 differentially expressed proteins (DEPs) were reliably quantified by iTRAQ analysis in the B. bassiana infected larvae at 18, 24, 36, 48 h post infection (hpi) respectively. Based on GO annotations, 6, 4, 128, 316 DEPs were involved in biological processes, 12, 5, 143, 376 DEPs were involved in molecular functions, and 6, 3, 108, 256 DEPs were involved in cell components at 18, 24, 36, 48 hpi respectively. KEGG pathway analysis displayed that 18, 12, 210, 548 DEPs separately participated in 63, 35, 201, 264 signal transduction pathways at different time of infection, and moreover a higher proportion of DEPs involved in metabolic pathways. The cluster analysis on the DEPs of different infection stages distinguished a co-regulated DEP, lysozyme precursor, which was up-regulated at both the mRNA level and the protein level, indicating that the lysozyme protein kept playing an important role in defending the silkworm against B. bassiana infection. This was the first report using an iTRAQ approach to analyze proteomes of the whole silkworm against B. bassiana infection, which contributes to better understanding the defense mechanisms of silkworm to B. bassiana infection and provides important experimental data for the identification of key factors involved in the interaction between the pathogenic fungus and its host.


Subject(s)
Beauveria/immunology , Bombyx/immunology , Bombyx/microbiology , Immunity, Innate/immunology , Muramidase/metabolism , Animals , Beauveria/pathogenicity , Bombyx/metabolism , Gene Expression Regulation/immunology , Larva/metabolism , Larva/microbiology , Muramidase/biosynthesis , Muramidase/genetics , Proteome/analysis , Proteomics/methods , Signal Transduction , Tandem Mass Spectrometry/methods
10.
Arch Insect Biochem Physiol ; 106(3): 1-12, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33619747

ABSTRACT

Bombyx mori cypovirus (BmCPV) is one of the most important pathogens causing severe disease to silkworm. Emerging evidence indicates that long noncoding RNAs (lncRNAs) play importantly regulatory roles in virus infection and host immune response. To better understand the interaction between silkworm, Bombyx mori and BmCPV, we performed a comparative transcriptome analysis on lncRNAs and mRNAs between the virus-infected and noninfected silkworm larvae midgut at two time points postinoculation. A total of 16,753 genes and 1845 candidate lncRNAs were identified, among which 356 messenger RNA (mRNAs) and 41 lncRNAs were differentially expressed (DE). Target gene prediction revealed that most of DEmRNAs (123) were coexpressed with 28 DElncRNAs, suggesting that the expression of mRNA is mainly affected through trans- regulation by BmCPV-induced lncRNAs, and a regulatory network of DElncRNAs and DEmRNAs was then constructed. According to the network, many genes involved in apoptosis, autophagy, and antiviral response, such as ATG3, PDCD6, IBP2, and MFB1, could be targeted by different DElncRNAs, implying the essential roles of these genes and lncRNAs in BmCPV infection. In all, our studies revealed for the first time the alteration of lncRNA expression in BmCPV-infected larvae and its potential influence on BmCPV replication, providing a new perspective for host-cypovirus interaction studies.


Subject(s)
Bombyx , RNA, Long Noncoding , Virus Diseases , Animals , Bombyx/genetics , Bombyx/immunology , Bombyx/metabolism , Bombyx/virology , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Genes, Insect , Host Microbial Interactions , Immunity , Larva/genetics , Larva/immunology , Larva/metabolism , RNA, Long Noncoding/isolation & purification , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , Reoviridae , Virus Diseases/immunology , Virus Diseases/metabolism
11.
J Invertebr Pathol ; 179: 107537, 2021 02.
Article in English | MEDLINE | ID: mdl-33472087

ABSTRACT

Bombyx mori nucleopolyhedrosis virus (BmNPV) is one of the greatest threats to sustainable development of the sericulture industry. Circular RNA (circRNA), a type of non-coding RNA, has been shown to play important roles in gene expression regulation, immune response, and diseases. The fat body is a tissue with both metabolic and immune functions. To explore the potential immune function of circRNAs, we analyzed differentially expressed (DE)circRNAs, microRNAs(miRNAs), and mRNAs in the B. mori fat body in response to BmNPV infection using high-throughput RNA sequencing. A total of 77 DEcircRNAs, 32 DEmiRNAs, and 730 DEmRNAs that are associated with BmNPV infection were identified. We constructed a DEcircRNA/DEmiRNA/DEmRNA and DEcircRNA/DEmiRNA/BmNPV gene regulatory network and validated the differential expression of circ_0001432 and its corresponding miRNA (miR-2774c and miR-3406-5p) and mRNA (778467 and 101745232) in the network. Tissue-specific expression of circ_0001432 and its expression at different time points were also examined. KEGG pathway analysis of DEmRNAs, target genes of DEmiRNAs, and host genes of DEcircRNAs in the network showed that these genes were enriched in several metabolic pathways and signaling pathways, which could play important roles in insect immune responses. Our results suggest that circRNA could be involved in immune responses of the B. mori fat body and help in understanding the molecular mechanisms underlying silkworm-pathogen interactions.


Subject(s)
Bombyx/genetics , Bombyx/immunology , Fat Body/immunology , Gene Regulatory Networks/immunology , Immunity, Innate/genetics , Nucleopolyhedroviruses/physiology , RNA, Circular/genetics , Animals , Bombyx/growth & development , High-Throughput Nucleotide Sequencing , Larva/genetics , Larva/growth & development , Larva/immunology , MicroRNAs/genetics , MicroRNAs/immunology , RNA, Circular/immunology , RNA, Circular/metabolism , RNA, Messenger/genetics , RNA, Messenger/immunology
12.
Ecotoxicol Environ Saf ; 209: 111759, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33341695

ABSTRACT

Ionic liquids (ILs) have been reported to be a potential water and soil pollutant, whose toxicity has gained much attention in recent years. In this work, silkworm larvae were used as a novel in vivo model to assess the biotoxicity of ILs, which were performed by three steps. The first step was to determine the susceptibility of different silkworm strains to ILs. Data showed that Jingsong×haoyue was the most susceptible one among three silkworm strains (Jingsong×haoyue, P50, and Yi16) for evaluating the biological effects of ILs. The second step was to compare the toxicity of ILs with different structures using the larvae of Jingsong×haoyue. It was found that three representative ILs, 1-octyl-3-methylimidazole chloride ([C8mim]Cl), N-octyl-3-methylpyridine chloride ([C8mpy]Cl), and 1-octyl-3-methylimidazole tetrafluoroborate ([C8mim]BF4), had significant toxic effects on the growth and development of the larvae with 24 h median lethal concentration (24 h-LC50) values of 112.3, 156.3, and 68.9 µg g-1, respectively, indicating that the types of anions and cations had impacts on the toxicity of ILs. The last step was targeted at investigating responses of the larvae to the exposure of ILs. It was observed that remarkable physiological and biochemical responses occurred in different tissues of the larvae. For example, activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in different tissues increased significantly to form an active protective mechanism for alleviating the toxic effects of ILs. Additionally, an increase of malondialdehyde (MDA) contents was found in the larvae. The data suggested that ILs could induce lipid peroxidation and cellular damage, which may be the main reason for toxicity of ILs to the larvae. Therefore, silkworm larvae could be used as a susceptible and reliable in vivo model to evaluate the toxicity of ILs, and the results are helpful to reveal their toxic mechanism to insects.


Subject(s)
Hazardous Substances/toxicity , Ionic Liquids/toxicity , Animals , Anions/chemistry , Bombyx/metabolism , Bombyx/physiology , Catalase/metabolism , Cations , Chlorides , Feasibility Studies , Imidazoles , Larva/metabolism , Lipid Peroxidation/drug effects , Malondialdehyde , Superoxide Dismutase/metabolism , Toxicity Tests
13.
Arch Insect Biochem Physiol ; 105(3): e21735, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32881053

ABSTRACT

The disease caused by Bombyx mori nucleopolyhedrovirus (BmNPV) has always been difficult to control, resulting in tremendous economic losses in the sericulture industry. Although much has been learned about the impact of noncoding RNAs on pathogenesis, the role of circular RNA (circRNA) in insect immunity remains unclear. To explore circRNA regulation involved in BmNPV infection, we used transcriptome analysis of BmN cells with or without BmNPV infection to generate circRNA data set. A total of 444 novel circRNAs were identified in BmN cells, with 198 pervasively distributed both in the control group and BmNPV-infection group. The host genes were enriched inMAPK signaling pathway, dorso-ventral axis formation, and ECM-receptor interaction, which were required for the normal larval growth. A total of 75 circRNAs were differentially expressed (DE) on BmNPV infection. Six downregulated circRNAs were validated by Sanger sequencing and qRT-PCR. DEcircRNA-miRNA-DEmRNA network was constructed based on the six validated circRNAs. Pathway analysis indicated that the predicted target genes were mainly enriched in the metabolic pathway and immune-related signaling pathway. Our results may provide a basis for further studies on circRNA function in BmN cells challenged by BmNPV infection and offer an insight into the molecular mechanism on silkworm-virus interaction.


Subject(s)
Bombyx/genetics , Bombyx/virology , Nucleopolyhedroviruses/physiology , RNA, Circular/genetics , Animals , Bombyx/immunology , Cell Line , Gene Expression Profiling , Host-Pathogen Interactions , Signal Transduction
14.
Eur J Pharmacol ; 887: 173434, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32763299

ABSTRACT

Bombyx mori antimicrobial peptides (BmAMPs) are important effectors in silkworm immune system. They can inhibit and kill a variety of bacteria and fungi. Recent studies have shown that some kinds of BmAMPs exert strong inhibitory effects on a variety of tumor cells. In the present study, the antitumor activity of BmAMP Cecropin A (BmCecA) and BmAMP Cecropin D (BmCecD) was investigated against human esophageal cancer cells and their antitumor mechanism preliminary explored. Cell Counting Kit-8 and colony formation assays indicated that BmCecA and BmCecD suppressed cell proliferation and reduced colony formation of both Eca109 and TE13 cells in a dose-dependent manner, but exhibited no inhibitory effect on normal human embryonic kidney 293T cells. Wound healing and invasion experiments indicated that both BmCecA and BmCecD inhibited migration and invasion of Eca109 and TE13 cells in vitro. Annexin V/propidium iodide staining and flow cytometry detection suggested that BmCecA induced the apoptosis of Eca109 cells in a dose-dependent manner. RT-qPCR and western blot analysis showed that BmCecA induced apoptosis of Eca109 cells through the activation of a mitochondria-mediated caspase pathway, the upregulation of B-cell lymphoma 2 (Bcl-2)-associated X protein and the downregulation of Bcl-2. In addition, BmCecA significantly inhibited the growth of xenograft tumors in Eca109-bearing mice. These results suggested that BmCecA and BmCecD might serve as potential therapeutic agents for the treatment of cancer in the future.


Subject(s)
Bombyx , Cecropins/therapeutic use , Esophageal Neoplasms/prevention & control , Pore Forming Cytotoxic Proteins/therapeutic use , Amino Acid Sequence , Animals , Apoptosis/drug effects , Apoptosis/physiology , Cecropins/isolation & purification , Cecropins/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/physiology , Esophageal Neoplasms/pathology , Female , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Pore Forming Cytotoxic Proteins/isolation & purification , Pore Forming Cytotoxic Proteins/pharmacology
15.
Virol J ; 17(1): 48, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32248835

ABSTRACT

Cypoviruses (CPVs) are RNA viruses with segmented double-stranded genome and major pathogens of various insects, including economic insects like silkworms and pest insects for agricultural crops and forests. Genome reassortment and recombination are common phenomenon for viruses as a mechanism to expand host range and increase virulence. In the present study, we analyzed the reassortant and recombination events for CPVs. The results showed that two genome segments (S1 and S4) of BmCPV1-YN shared higher nucleotide identity with the corresponding segment of BmCPV1-I while others were all more closely to BmCPV1-SZ, suggesting BmCPV1-YN was originated from reassortant events between BmCPV1-I and BmCPV1-SZ. Recombination analyses revealed that S6 of BmCPV1-YN was a recombinant segment derived from BmCPV1-I and BmCPV1-SZ, and S10 of DpCPV1 was a recombinant segment emerged from BmCPV1-I and LdCPV1. Our findings provide the evidence for the fact that CPVs could undergo reassortant and recombinant events and enrich the knowledge about etiology and molecular epidemiology of CPVs.


Subject(s)
Genome, Viral , Reassortant Viruses/genetics , Recombination, Genetic , Reoviridae/genetics , Animals , Insecta/virology , Phylogeny , RNA, Viral/genetics
16.
J Invertebr Pathol ; 170: 107323, 2020 02.
Article in English | MEDLINE | ID: mdl-31926972

ABSTRACT

Bombyx mori nucleopolyhedrosis virus (BmNPV) has always been a great challenge to the development and stability of the sericulture industry. LncRNAs have been reported to play important roles in gene expression regulation, development and immune response but the roles of lncRNAs in BmNPV infection and silkworm-BmNPV interaction are not clear. We used a genome-wide transcriptome analysis to identify the lncRNAs in Bombyx mori cells (BmN cells) and analyzed the differentially expressed lncRNAs, microRNAs and protein-coding genes in silkworm cells with or without BmNPV infection. A total of 13,159 candidate lncRNAs were identified in the BmN cells, among which 4450 lncRNAs were differentially expressed (DE) with 2837 up-regulated and 1613 down-regulated. In addition, 66 differentially expressed miRNAs (DEmiRNAs) and 7448 differentially expressed mRNAs (DEmRNAs) were identified, and DElncRNA-DEmiRNA-DEmRNA regulatory network was constructed. Gene expression was variable in 4973 of predicted lncRNA cis target genes in BmNPV infected cells. KEGG pathway analysis indicated that the target genes of DElncRNAs are enriched in ubiquitin mediated proteolysis, endocytosis and lysosome pathways. qRT-PCR validated the differential expression of several lncRNAs and miRNAs. Our results suggested that DElncRNAs participate in host response to BmNPV infection via interactions with their target genes and miRNAs. Our results will help us to improve our understanding of lncRNA-mediated regulatory roles in BmNPV infection and provide new insights into silkworm-pathogen interactions.


Subject(s)
Bombyx/genetics , Gene Regulatory Networks , Genome, Insect , MicroRNAs/genetics , Nucleopolyhedroviruses/physiology , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Animals , Bombyx/virology , Gene Expression Profiling , Gene Expression Regulation , Host-Pathogen Interactions , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism
17.
Insect Mol Biol ; 29(1): 66-76, 2020 02.
Article in English | MEDLINE | ID: mdl-31301266

ABSTRACT

Storage proteins are haemolymph-specific proteins in insects, mainly synthesized in the fat body, released into the haemolymph, and then selectively reabsorbed by the fat body before pupation. These storage proteins play an important role in insect metamorphosis and egg development. Some of these storage proteins are responsive to pathogen infection and can even suppress pathogen multiplication. However, the mechanisms of the physiological, biochemical and immune-responsive functions of storage proteins remain unclear. In this study, the expression patterns of Bombyx mori storage protein 1 (BmSP1) during the larval stage were analysed. Then, BmSP1 protein fused with enhanced green fluorescent protein (EGFP) was successfully expressed in a B. mori baculovirus vector expression system. Quantitative real-time PCR showed that the expression level of BmSP1 increased with the advance of instars and reached the highest level in the fifth instar, especially in the fat body. Recombinant BmSP1 expressed in silkworm larvae inhibited haemolymph melanization. Then, proteins that interact with BmSP1 were identified with EGFP used as an antigenic determinant by co-immunoprecipitation. A 30 kDa low molecular weight lipoprotein PBMHP-6 precursor (BmLP6) was shown to interact with BmSP1. Yeast two-hybrid experiments confirmed the interaction between BmSP1 and BmLP6. The results obtained in this study will be helpful for further study of the functions of BmSP1 and BmLP6 in the regulatory network of silkworm development and innate immunity.


Subject(s)
Bombyx/growth & development , Bombyx/metabolism , Insect Proteins/metabolism , Animals , Bombyx/genetics , Bombyx/immunology , Cell Line , Fat Body/metabolism , Green Fluorescent Proteins , Hemolymph/immunology , Immunity, Innate , Insect Proteins/genetics , Larva/genetics , Larva/immunology , Larva/metabolism , Recombinant Proteins
18.
Insect Sci ; 27(3): 449-462, 2020 Jun.
Article in English | MEDLINE | ID: mdl-30869181

ABSTRACT

Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a major pathogen of the economic insect silkworm, Bombyx mori. Virus-encoded microRNAs (miRNAs) have been proven to play important roles in host-pathogen interactions. In this study we identified a BmCPV-derived miRNA-like 21 nt small RNA, BmCPV-miR-1, from the small RNA deep sequencing of BmCPV-infected silkworm larvae by stem-loop quantitative real-time PCR (qPCR) and investigated its functions with qPCR and lentiviral expression systems. Bombyx mori inhibitor of apoptosis protein (BmIAP) gene was predicted by both target prediction software miRanda and Targetscan to be one of its target genes with a binding site for BmCPV-miR-1 at the 5' untranslated region. It was found that the expression of BmCPV-miR-1 and its target gene BmIAP were both up-regulated in BmCPV-infected larvae. At the same time, it was confirmed that BmCPV-miR-1 could up-regulate the expression of BmIAP gene in HEK293T cells with lentiviral expression systems and in BmN cells by transfecting mimics. Furthermore, BmCPV-miR-1 mimics could up-regulate the expression level of BmIAP gene in midgut and fat body in the silkworm. In the midgut of BmCPV-infected larvae, BmCPV-miR-1 mimics could be further up-regulated and inhibitors could lower the virus-mediated expression of BmIAP gene. With the viral genomic RNA segments S1 and S10 as indicators, BmCPV-miR-1 mimics could up-regulate and inhibitors down-regulate their replication in the infected silkworm. These results implied that BmCPV-miR-1 could inhibit cell apoptosis in the infected silkworm through up-regulating BmIAP expression, providing the virus with a better cell circumstance for its replication.


Subject(s)
Bombyx/virology , Inhibitor of Apoptosis Proteins/metabolism , MicroRNAs/metabolism , RNA, Viral/metabolism , Reoviridae , Animals , Bombyx/metabolism , Gene Expression Profiling , HEK293 Cells , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Insect Proteins/metabolism , Larva/metabolism , Larva/virology , Reoviridae/genetics , Reoviridae/metabolism , Sequence Analysis, RNA
19.
BMC Genomics ; 20(1): 736, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31615392

ABSTRACT

BACKGROUND: Bombyx mori nucleopolyhedrosis virus (BmNPV) is a major pathogen that threatens the sustainability of the sericultural industry. DNA methylation is a widespread gene regulation mode in epigenetics, which plays an important role in host immune response. Until now, little has been known about epigenetic regulation on virus diseases in insects. This study aims to explore the role of DNA methylation in BmNPV proliferation. RESULTS: Inhibiting DNA methyltransferase (DNMT) activity of silkworm can suppress BmNPV replication. The integrated analysis of transcriptomes and DNA methylomes in silkworm midguts infected with or without BmNPV showed that both the expression pattern of transcriptome and DNA methylation pattern are changed significantly upon BmNPV infection. A total of 241 differentially methylated regions (DMRs) were observed in BmNPV infected midguts, among which, 126 DMRs were hyper-methylated and 115 DMRs were hypo-methylated. Significant differences in both mRNA transcript level and DNA methylated levels were found in 26 genes. BS-PCR validated the hypermethylation of BGIBMGA014008, a structural maintenance of chromosomes protein gene in the BmNPV-infected midgut. In addition, DNMT inhibition reduced the expression of inhibitor of apoptosis family genes, iap1 from BmNPV, Bmiap2, BmSurvivin1 and BmSurvivin2. CONCLUSION: Our results indicate that DNA methylation plays positive roles in BmNPV proliferation and loss of DNMT activity could induce the apoptosis of infected cells to suppress BmNPV proliferation. Our results may provide a new idea and research direction for the molecular mechanism on insect-virus interaction.


Subject(s)
Bombyx/virology , DNA Methylation , Enzyme Inhibitors/pharmacology , Gene Expression Profiling/veterinary , Nucleopolyhedroviruses/physiology , Animals , Bombyx/genetics , Cell Proliferation/drug effects , Cells, Cultured , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , Epigenesis, Genetic , Epigenomics , Gene Expression Regulation , Host Microbial Interactions , Nucleopolyhedroviruses/drug effects , Sequence Analysis, RNA , Virus Replication/drug effects
20.
J Invertebr Pathol ; 166: 107227, 2019 09.
Article in English | MEDLINE | ID: mdl-31386830

ABSTRACT

Beauveria bassiana, a pathogen of the economically important silkworm (Bombyx mori), causes serious losses in the sericulture industry; however, the mechanisms underlying B. bassiana infection and the silkworm response are not fully understood. To obtain new insights into the interaction between B. bassiana and its host, hemolymph samples from fifth instar silkworm larvae infected with B. bassiana were analyzed at 36-h post-inoculation using a label-free LC-MS/MS proteomic technique. In total, 671 proteins were identified in the hemolymph, including 87 differentially expressed proteins, 42 up-regulated and 45 down-regulated in infected larvae. Six were detected only in infected larvae, and five were detected only in uninfected larvae. Based on GO annotations, 48 of the differentially expressed proteins were involved in molecular functions, 42 were involved in biological processes, and 39 were involved in cell components. A KEGG pathway analysis indicated that these differentially expressed proteins participate in 85 signal transduction pathways, including the amoebiasis, MAPK signaling, Hippo signaling, Toll and Imd signaling, and lysosome pathways. The silkworm hemolymph is the main site for B. bassiana replication. We identified differentially expressed proteins involved in the regulation of the host response to B. bassiana infection, providing important experimental data for the identification of key factors contributing to the interaction between the pathogenic fungus and its host.


Subject(s)
Beauveria , Bombyx/immunology , Bombyx/microbiology , Insect Proteins/metabolism , Animals , Chromatography, Liquid , Hemolymph/immunology , Hemolymph/metabolism , Host-Pathogen Interactions/physiology , Insect Proteins/analysis , Insect Proteins/immunology , Larva/microbiology , Mycoses/veterinary , Proteomics/methods , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...