Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
One Earth ; 7(3): 497-505, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38532982

ABSTRACT

China's carbon-neutral target could have benefits for ambient fine particulate matter (PM2.5)-associated mortality. Although previous studies have researched such benefits, the potential impact on cardiovascular disease incidence burden is yet to be investigated thoroughly. Here, we first estimate the association between short-term PM2.5 exposure and the incidence of stroke and coronary heart disease (CHD) via a case-crossover study before projecting future changes in short-term PM2.5-associated excess incidence across China from 2025 to 2060 under three different emission scenarios. We find that, compared to the 2015-2020 baseline, average PM2.5 concentrations nationwide in 2060 under SSP119 (an approximation of a carbon-neutral scenario) are projected to decrease by 81.07%. The short-term PM2.5-related excess incidence of stroke and CHD is projected to be reduced to 3,352 cases (95% confidence interval: 939, 5,738)-compared with 34,485 cases under a medium-emissions scenario (SSP245)-and is expected to be accompanied by a 95% reduction in the related economic burden. China's carbon-neutral policies are likely to bring health benefits for cardiovascular disease by reducing short-term PM2.5-related incidence burden.

2.
Environ Int ; 185: 108533, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38430585

ABSTRACT

BACKGROUND: The potential effects of short-term exposure to major ambient gaseous pollutants (ozone: O3, carbon monoxide: CO, and sulfur dioxide: SO2) on platelet mitochondrial DNA (mtDNA) methylation have been uncertain and no studies have examined whether platelet mtDNA methylation levels could modify the associations between ambient gaseous pollutants and the risks of ST-segment depression (STDE) and T-wave inversion events (TIE), two indicators of myocardial ischemia. METHODS: This study used data from a randomized, double-blind, placebo-controlled intervention study with a standardized 24-hour exposure protocol among 110 participants in Beijing. Absolute changes in platelet mtDNA methylation (ACmtDNAm) levels were determined by two repeated measurements on platelet mtDNA methylation levels in blood samples collected before and after the 24-hour exposure period. A multivariable linear regression model and a generalized linear model with a Poisson link function were used to investigate the associations of ambient gaseous pollutants with platelet mtDNA methylation levels, STDE, and TIE, respectively. RESULTS: Short-term O3 exposure was significantly associated with decreased ACmtDNAm at ATP6_P1 but increased ACmtDNAm at mt12sRNA, MT-COX1, and MT-COX1_P2; short-term CO and SO2 exposures were significantly associated with decreased ACmtDNAm at D-loop, MT-COX3- and ATP-related genes. Moreover, short-term O3 exposure was significantly associated with increased risks of STDE and TIE, and ACmtDNAm at MT-COX1 and MT-COX1_P2 modified the association between short-term O3 exposure and STDE events. L-Arg supplementation attenuated the effects of ambient gaseous pollutants, particularly O3, on ACmtDNAm and STDE. CONCLUSIONS: Platelet mtDNA methylation levels are promising biomarkers of short-term exposure to ambient gaseous air pollution, and are likely implicated in the mechanism behind the association of ambient O3 pollution with adverse cardiovascular effects. L-Arg supplementation showed the potential to mitigate the adverse effects of ambient O3 pollution.


Subject(s)
Air Pollutants , Air Pollution , Myocardial Ischemia , Ozone , Humans , Air Pollutants/toxicity , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Blood Platelets , DNA, Mitochondrial , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Methylation , Nitrogen Dioxide/analysis , Ozone/analysis , Particulate Matter/analysis , Randomized Controlled Trials as Topic
3.
Sci Total Environ ; 924: 171561, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38458472

ABSTRACT

Ambient ozone (O3) is recognized as a significant air pollutant with implications for cardiorespiratory health, yet the effects of indoor O3 exposure have received less consideration. Furthermore, while sleep occupies one-third of life, research on the health consequences of O3 exposure during this crucial period is scarce. This study aimed to investigate associations of indoor O3 during sleep with cardiorespiratory function and potential predisposing factors. A prospective study among 81 adults was conducted in Beijing, China. Repeated measurements of cardiorespiratory indices reflecting lung function, airway inflammation, cardiac autonomic function, blood pressure, systemic inflammation, platelet and glucose were performed on each subject. Real-time concentrations of indoor O3 during sleep were monitored. Associations of O3 with cardiorespiratory indices were evaluated using linear mixed-effect model. Effect modification by baseline lifestyles (diet, physical activity, sleep-related factors) and psychological status (stress and depression) were investigated through interaction analysis. The average indoor O3 concentration during sleep was 20.3 µg/m3, which was well below current Chinese indoor air quality standard of 160 µg/m3. O3 was associated with most respiratory indicators of decreased airway function except airway inflammation; whereas the cardiovascular effects were only manifested in autonomic dysfunction and not in others. An interquartile range increases in O3 at 6-h average was associated with changes of -3.60 % (95 % CI: -6.19 %, -0.93 %) and -9.60 % (95 % CI: -14.53 %, -4.39 %) in FVC and FEF25-75, respectively. Further, stronger effects were noted among participants with specific dietary patterns, poorer sleep and higher level of depression. This study provides the first general population-based evidence that low-level exposure to indoor O3 during sleep has greater effects on the respiratory system than on the cardiovascular system. Our findings identify the respiratory system as an important target for indoor O3 exposure, and particularly highlight the need for greater awareness of indoor air quality, especially during sleep.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Adult , Humans , Air Pollution/analysis , Prospective Studies , Air Pollutants/adverse effects , Air Pollutants/analysis , Ozone/adverse effects , Ozone/analysis , China , Inflammation , Particulate Matter/analysis , Environmental Exposure/analysis
4.
Environ Pollut ; 336: 122446, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37625771

ABSTRACT

Elucidating the associations between environmental noise and heart rate variability (HRV) would be beneficial for the prevention and control of detrimental cardiovascular changes. Obese people have been found to manifest heightened susceptibility to the adverse effects of noise on HRV. However, the underlying mechanisms remain unclear. Based on 53 normal-weight and 44 obese young adults aged 18-26 years in Beijing, China, this study aimed to investigate the role of obesity-related cardiometabolic indicators for associations between short-term environmental noise exposure and HRV in the real-world context. The participants underwent personal noise exposure and ambulatory electrocardiogram monitoring using portable devices at 5-min intervals for 24 continuous hours. Obesity-related blood pressure, glucose and lipid metabolism, and inflammatory indicators were subsequently examined. Generalized mixed-effect models were used to estimate the associations between noise exposure and HRV parameters. The C-peptide, homeostasis model assessment of insulin resistance (HOMA-IR), and leptin levels were higher in obese participants compared to normal-weight participants. We observed amplified associations between short-term noise exposure and decreases in HRV among participants with higher C-peptide, HOMA-IR, and leptin levels. For instance, a 1 dB(A) increment in 3 h-average noise exposure level preceding each measurement was associated with changes of -0.20% (95%CI: -0.45%, 0.04%) and -1.35% (95%CI: -1.85%, -0.86%) in standard deviation of all normal to normal intervals (SDNN) among participants with lower and higher C-peptide levels, respectively (P for interaction <0.05). Meanwhile, co-existing fine particulate matter (PM2.5) could amplify the associations between noise and HRV among obese participants and participants with higher C-peptide, HOMA-IR, and leptin levels. The more apparent associations of short-term exposure to environmental noise with HRV and the effect modification by PM2.5 may be partially explained by the higher C-peptide, HOMA-IR, and leptin levels of obese people.

5.
Environ Sci Pollut Res Int ; 30(43): 96689-96700, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37578585

ABSTRACT

Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy. Metal exposure is an emerging factor affecting the risk of GDM. However, the effects of metal mixture on GDM and key metals within the mixture remain unclear. This study was aimed at investigating the association between metal mixture during early pregnancy and the risk of GDM using four statistical methods and further at identifying the key metals within the mixture associated with GDM. A nested case-control study including 128 GDM cases and 318 controls was conducted in Beijing, China. Urine samples were collected before 13 gestational weeks and the concentrations of 13 metals were measured. Single-metal analysis (unconditional logistic regression) and mixture analyses (Bayesian kernel machine regression (BKMR), quantile g-computation, and elastic-net regression (ENET) models) were applied to estimate the associations between exposure to multiple metals and GDM. Single-metal analysis showed that Ni was associated with lower risk of GDM, while positive associations of Sr and Sb with GDM were observed. Compared with the lowest quartile of Ni, the ORs of GDM in the highest quartiles were 0.49 (95% CI 0.24, 0.98). In mixture analyses, Ni and Mg showed negative associations with GDM, while Co and Sb were positively associated with GDM in BKMR and quantile g-computation models. No significant joint effect of metal mixture on GDM was observed. However, interestingly, Ni was identified as a key metal within the mixture associated with decreased risk of GDM by all three mixture methods. Our study emphasized that metal exposure during early pregnancy was associated with GDM, and Ni might have important association with decreased GDM risk.


Subject(s)
Diabetes, Gestational , Pregnancy , Female , Humans , Diabetes, Gestational/chemically induced , Diabetes, Gestational/epidemiology , Case-Control Studies , Bayes Theorem , Metals , Logistic Models
6.
Chemosphere ; 341: 140009, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37648166

ABSTRACT

Increasing studies have linked air pollution to kidney dysfunction, however, the associations between the mixture of air pollutants and kidney function and potential effect modifiers remain unclear. We aimed to investigate whether obese adults were more susceptible than normal-weight ones to the joint effects of multiple air pollutants on kidney function and further to explore effect modification by free fatty acids (FFAs). Forty obese and 49 normal-weight adults were recruited from a panel study (252 follow-up visits). Individual exposure levels of air pollutants (PM2.5, PM10, O3, NO2, SO2 and CO) were estimated. Glomerular function (cystatin C (CysC) and estimated glomerular filtration rate (eGFR)) and tubular function (neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1) were evaluated. Plasma levels of FFAs including trans fatty acids (TFAs) and essential fatty acids (EFAs) were quantified using targeted metabolomics. Bayesian kernel machine regression model was applied to estimate the associations between the mixture of air pollutants and kidney function. The results showed significant joint effects of air pollutants on kidney function indicators. In the normal-weight group, the mixture of air pollutants was significantly associated with CysC and eGFRcr-cys when the mixture was at or above its 70 percentile compared with the median, where O3 was identified as the key pollutant. In the obese group, a significantly positive association between the pollutant mixture and NGAL was observed in addition to trends in CysC and eGFRcr-cys, mainly driven by SO2. Interaction analysis suggested that the associations of air pollutants with kidney function were augmented by TFAs in both groups and weakened by EFAs in the normal-weight group. This study highlighted the renal adverse effects of air pollutants and modification of FFAs, which has implications for target prevention for kidney dysfunction associated with air pollution, especially among vulnerable populations.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Adult , Humans , Air Pollutants/toxicity , Air Pollutants/analysis , Fatty Acids, Nonesterified , Lipocalin-2/analysis , Bayes Theorem , Air Pollution/analysis , Environmental Pollutants/analysis , Obesity/chemically induced , Particulate Matter/analysis , Nitrogen Dioxide/analysis , China
7.
J Hazard Mater ; 454: 131550, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37148791

ABSTRACT

Air pollution contributes substantially to the development of chronic obstructive pulmonary disease (COPD). To date, the effect of air pollution on oxygen saturation (SpO2) during sleep and potential susceptibility factors remain unknown. In this longitudinal panel study, real-time SpO2 was monitored in 132 COPD patients, with 270 nights (1615 h) of sleep SpO2 recorded. Exhaled nitric oxide (NO), hydrogen sulfide (H2S) and carbon monoxide (CO) were measured to assess airway inflammatory characteristics. Exposure levels of air pollutants were estimated by infiltration factor method. Generalized estimating equation was used to investigate the effect of air pollutants on sleep SpO2. Ozone, even at low levels (<60 µg/m3), was significantly associated with decreased SpO2 and extended time of oxygen desaturation (SpO2 < 90%), especially in the warm season. The associations of other pollutants with SpO2 were weak, but significant adverse effects of PM10 and SO2 were observed in the cold season. Notably, stronger effects of ozone were observed in current smokers. Consistently, smoking-related airway inflammation, characterized by higher levels of exhaled CO and H2S but lower NO, significantly augmented the effect of ozone on SpO2 during sleep. This study highlights the importance of ozone control in protecting sleep health in COPD patients.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Pulmonary Disease, Chronic Obstructive , Humans , Air Pollutants/analysis , Oxygen Saturation , Particulate Matter/analysis , Environmental Exposure/analysis , Air Pollution/analysis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/chemically induced , Ozone/analysis , Phenotype , Smoking/adverse effects
8.
Eur Heart J ; 44(18): 1622-1632, 2023 05 07.
Article in English | MEDLINE | ID: mdl-36893798

ABSTRACT

AIMS: The available literature on morbidity risk of cardiovascular diseases associated with ambient ozone pollution is still limited. This study examined the potential acute effects of exposure to ambient ozone pollution on hospital admissions of cardiovascular events in China. METHODS AND RESULTS: A two-stage multi-city time-series study approach was used to explore the associations of exposure to ambient ozone with daily hospital admissions (n = 6 444 441) for cardiovascular events in 70 Chinese cities of prefecture-level or above during 2015-17. A 10 µg/m3 increment in 2-day average daily 8 h maximum ozone concentrations was associated with admission risk increases of 0.46% [95% confidence interval (CI): 0.28%, 0.64%] in coronary heart disease, 0.45% (95% CI: 0.13%, 0.77%) in angina pectoris, 0.75% (95% CI: 0.38%, 1.13%) in acute myocardial infarction (AMI), 0.70% (95% CI: 0.41%, 1.00%) in acute coronary syndrome, 0.50% (95% CI: 0.24%, 0.77%) in heart failure, 0.40% (95% CI: 0.23%, 0.58%) in stroke and 0.41% (95% CI: 0.22%, 0.60%) in ischemic stroke, respectively. The excess admission risks for these cardiovascular events associated with high ozone pollution days (with 2-day average 8-h maximum concentrations ≥100 µg/m3 vs. < 70 µg/m3) ranged from 3.38% (95% CI: 1.73%, 5.06%) for stroke to 6.52% (95% CI: 2.92%, 10.24%) for AMI. CONCLUSION: Ambient ozone was associated with increased hospital admission risk for cardiovascular events. Greater admission risks for cardiovascular events were observed under high ozone pollution days. These results provide evidence for the harmful cardiovascular effects of ambient ozone and call for special attention on the control of high ozone pollution.


Subject(s)
Air Pollutants , Air Pollution , Myocardial Infarction , Ozone , Stroke , Humans , Ozone/adverse effects , Ozone/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/analysis , Myocardial Infarction/epidemiology , Stroke/epidemiology , Hospitals
9.
Toxicology ; 488: 153488, 2023 04.
Article in English | MEDLINE | ID: mdl-36918108

ABSTRACT

Connexin hemichannels and pannexin channels are two types of transmembrane channels that allow autocrine/paracrine signalling through the exchange of ions and molecules between the intra- and extracellular compartments. However, owing to the poor selectivity of permeable ions and metabolites, the massive opening of these plasma membrane channels can lead to an excessive influx of toxic substances and an outflux of essential metabolites, such as adenosine triphosphate, glutathione, glutamate and ions, resulting in unbalanced cell homeostasis and impaired cell function. It is becoming increasingly clear that these channels can be activated in response to external stimuli and are involved in toxicity, yet their concrete mechanistic roles in the toxic effects induced by stress and various environmental changes remain poorly defined. This review provides an updated understanding of connexin hemichannels and pannexin channels in response to multiple extrinsic stressors and how these activated channels and their permeable messengers participate in toxicological pathways and processes, including inflammation, oxidative damage, intracellular calcium imbalance, bystander DNA damage and excitotoxicity.


Subject(s)
Connexins , Gap Junctions , Gap Junctions/metabolism , Paracrine Communication , Glutathione/metabolism , Ions/metabolism
10.
Environ Int ; 172: 107791, 2023 02.
Article in English | MEDLINE | ID: mdl-36739855

ABSTRACT

BACKGROUND: Epidemiological studies suggest that both ambient ozone (O3) and temperature were associated with increased risks of adverse birth outcomes. However, very few studies explored their interaction effects, especially for small for gestational age (SGA) and large for gestational age (LGA). OBJECTIVES: To estimate the modification effects of ambient temperature on associations of ambient O3 exposure before and during pregnancy with preterm birth (PTB), low birth weight (LBW), SGA and LGA based on multicity birth cohorts. METHODS: A total of 56,905 singleton pregnant women from three birth cohorts conducted in Tianjin, Beijing and Maoming, China, were included in the study. Maximum daily 8-h average O3 concentrations of each pregnant woman from the preconception period to delivery for every day were estimated by matching their home addresses with the Tracking Air Pollution in China (TAP) datasets. We first applied the Cox proportional-hazards regression model to evaluate the city-specific effects of O3 exposure before and during pregnancy on adverse birth outcomes at different temperature levels with adjustment for potential confounders, and then a meta-analysis across three birth cohorts was conducted to calculate the pooled associations. RESULTS: In pooled analysis, significant modification effects of ambient temperature on associations of ambient O3 with PTB, LBW and LGA were observed (Pinteraction < 0.05). For a 10 µg/m3 increase in ambient O3 exposure at high temperature level (> 75th percentile), the risk of LBW increased by 28 % (HR: 1.28, 95% CI: 1.13-1.46) during the second trimester and the risk of LGA increased by 116% (HR: 2.16, 95%CI: 1.16-4.00) during the entire pregnancy, while the null or weaker association was observed at corresponding low (≤ 25th percentile) and medium (> 25th and ≤ 75th percentile) temperature levels. CONCLUSION: This multicity study added new evidence that ambient high temperature may enhance the potential effects of ambient O3 on adverse birth outcomes.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Pregnancy Complications , Premature Birth , Infant, Newborn , Pregnancy , Humans , Female , Air Pollutants/analysis , Premature Birth/epidemiology , Premature Birth/chemically induced , Temperature , Air Pollution/adverse effects , Air Pollution/analysis , Ozone/analysis , Pregnancy Complications/chemically induced , China/epidemiology , Fetal Growth Retardation/chemically induced , Maternal Exposure/adverse effects , Particulate Matter/analysis
11.
Environ Health Perspect ; 131(1): 17002, 2023 01.
Article in English | MEDLINE | ID: mdl-36598457

ABSTRACT

BACKGROUND: Depression and anxiety are two mental disorders that are often comorbid. However, the associations of long-term air pollution exposure with depression and anxiety remain inconclusive. OBJECTIVE: We conducted a cross-sectional and prospective study to examine the associations of ambient exposure to particulate matter (PM) with a diameter of ≤2.5µm (PM2.5), ≤10µm (PM10), and 2.5-10µm (PMcoarse), nitrogen oxides (NOx), and nitrogen dioxide (NO2) with the risk of depression and anxiety in the UK Biobank. METHODS: This study included 398,241 participants from the UK Biobank, 128,456 of whom participated the 7-y online mental health survey. A total of 345,876 individuals were free of depression and anxiety at baseline; of those, 16,185 developed incident mental disorders during a median of 8.7 y of follow-up. Depression and anxiety were assessed using hospital admission records and mental health questionnaires. Associations of air pollution with prevalent and incident mental disorders were examined using logistic regression and Cox regression models, respectively. RESULTS: Elevated levels of the five air pollutants were associated with higher odds of mental disorders at baseline. Levels of four pollutants but not PMcoarse were also associated with higher odds and risks of mental disorders during follow-up; specifically, hazard ratios [HR, 95% confidence interval (CI)] of an interquartile range increase in PM2.5, PM10, NOx, and NO2 for incident mental disorders were 1.03 (95% CI: 1.01, 1.05), 1.06 (95% CI: 1.04, 1.08), 1.03 (95% CI: 1.01, 1.05), and 1.06 (95% CI: 1.04, 1.09), respectively. An air pollution index reflecting combined effects of pollutants also demonstrated a positive association with the risk of mental disorders. HR (95% CI) of incident mental disorders were 1.11 (95% CI: 1.05, 1.18) in the highest quintile group in comparison with the lowest quintile of the air pollution index. We further observed that the associations between air pollution and mental disorders differed by a genetic risk score based on single nucleotide polymorphisms previously associated with genetic susceptibility to mental disorders in the UK Biobank cohort. DISCUSSION: To our knowledge, this research is one of the largest cohort studies that demonstrates an association between mental health disorders and exposure to long-term air pollution, which could be further enhanced by genetic predisposition. https://doi.org/10.1289/EHP10391.


Subject(s)
Air Pollution , Anxiety , Depression , Environmental Exposure , Genetic Predisposition to Disease , Humans , Air Pollutants/analysis , Anxiety/epidemiology , Biological Specimen Banks , Cross-Sectional Studies , Depression/epidemiology , Environmental Pollutants , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Prospective Studies , United Kingdom/epidemiology
12.
Sci Total Environ ; 856(Pt 1): 159014, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36162568

ABSTRACT

The cardiometabolic effects of air pollution in the context of mixtures and the underlying mechanisms remain not fully understood. This study aims to investigate the joint effect of air pollutant mixtures on a broad range of cardiometabolic parameters, examine the susceptibility of obese individuals, and determine the role of circulating fatty acids. In this panel study, metabolically healthy normal-weight (MH-NW, n = 49) and obese (MHO, n = 39) adults completed three longitudinal visits (257 person-visits in total). Personal exposure levels of PM2.5, PM10, O3, NO2, SO2, CO and BC were estimated based on fixed-site monitoring data, time-activity logs and infiltration factor method. Blood pressure, glycemic homeostasis, lipid profiles, systematic inflammation and coagulation biomarkers were measured. Targeted metabolomics was used to quantify twenty-eight plasma free fatty acids (FFAs). Bayesian kernel machine regression models were applied to establish the exposure-response relationships and identify key pollutants. Significant joint effects of measured air pollutants on systematic inflammation and coagulation biomarkers were observed in the MHO group, instead of the MH-NW group. Lipid profiles showed the most significant changes in both groups and O3 contributed the most to the total effect. Specific FFA patterns were identified, and de novo lipogenesis (DNL)-related pattern was most closely related to blood lipid profiles. In particular, interaction analysis suggested that DNL-related FFA pattern augmented the effects of O3 on triglyceride (TG, Pinteraction = 0.040), high-density lipoprotein cholesterol (HDL-C, Pinteraction = 0.106) and TG/HDL-C (Pinteraction = 0.020) in the MHO group but not MH-NW group. This modification was further confirmed by interaction analysis with estimated activity of SCD1, a key enzyme in the DNL pathway. Therefore, despite being metabolically healthy, obese subjects have a higher cardiometabolic susceptibility to air pollution, especially O3, and the DNL pathway may represent an intrinsic driver of lipid susceptibility. This study provides new insights into the cardiometabolic susceptibility of obese individuals to air pollution.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Adult , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Fatty Acids, Nonesterified , Particulate Matter/adverse effects , Particulate Matter/analysis , Bayes Theorem , Air Pollution/adverse effects , Air Pollution/analysis , Obesity/epidemiology , Lipids/analysis , Biomarkers/analysis , Inflammation
13.
Environ Pollut ; 315: 120418, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36257562

ABSTRACT

Particulate matter (PM) released by printers may cause airway inflammation and cardiac electrophysiological changes. We conducted a two-stage crossover study to examine the association between short-term exposure to printing shop particles (PSPs) and the heart rate variability (HRV) among healthy volunteers, as well as to evaluate the effect of air purifier intervention. The on-site assessments of PSPs and individual HRV parameters of the volunteers were used to analyze the influence of size-fractionated PSPs and air purifier intervention on HRV at different lag times after PSPs exposure (0 min, 5 min, 15 min, and 30 min) by using the linear mixed-effects models. We observed that changes in 6 HRV parameters were associated with particle mass concentration (PMC) of PSPs, and changes in 8 HRV parameters were associated with particle number concentration (PNC) of PSPs. The sensitive HRV parameters were the square root of the mean of the sum of the squares of differences between adjacent NN intervals (rMSSD), NN50 count divided by the total number of all NN intervals (pNN50), normalized high frequency power (nHF), very high frequency power (VHF), normalized low frequency power (nLF), and the ratio of low frequency power to high frequency power (LF/HF). Most HRV parameters exhibited the strongest effect associated with PMC and PNC at a lag time of 30 min. The air purifier intervention markedly reduced the PNC and PMC of size-fractionated PSPs, enhanced 5 HRV parameters, and decreased the nLF and LF/HF. Our study suggests that short-term exposure to PSPs can affect HRV parameters, reflecting changes in cardiac autonomic nervous activity, and the use of an air purifier can reduce the concentration of PSPs and improve the autonomic nervous system activity of the exposed individuals.


Subject(s)
Air Filters , Humans , Heart Rate , Healthy Volunteers , Cross-Over Studies , Printing, Three-Dimensional
14.
Environ Sci Technol ; 56(20): 14690-14700, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36197060

ABSTRACT

Epigenetic age (EA) is an emerging DNA methylation-based biomarker of biological aging, but whether EA is causally associated with short-term PM2.5 exposure remains unknown. We conducted a quasi-experimental study of 26 healthy adults to test whether short-term PM2.5 exposure accelerates seven EAs with three health examinations performed before, during, and after multiple PM2.5 pollution waves. Seven EAs were derived from the DNA methylation profiles of the Illumina HumanMethylationEPIC BeadChip from CD4+ T-helper cells. We found that an increase of 10 µg/m3 in the 0-24 h personal PM2.5 exposure prior to health examinations was associated with a 0.035, 0.035, 0.050, 0.055, 0.052, and 0.037-unit increase in the changes of z-scored DNA methylation age acceleration (AA,Horvath), AA (Hannum), AA (GrimAge), DunedinPoAm, mortality risk score (MS), and epiTOC, respectively (p-values < 0.05). The same increase in the 24-48 h average personal PM2.5 exposure yielded smaller effects but was still robustly associated with the changes in AA (GrimAge), DunedinPoAm, and MS. Such acute aging effects of PM2.5 were mediated by the changes in several circulating biomarkers, including EC-SOD and sCD40L, with up to ∼28% mediated proportions. Our findings demonstrated that short-term PM2.5 exposure could accelerate aging reflected by DNA methylation profiles via blood coagulation, oxidative stress, and systematic inflammation.


Subject(s)
Air Pollution , Particulate Matter , Adult , Aging , Biomarkers , DNA Methylation , Environmental Exposure/analysis , Epigenesis, Genetic , Humans , Superoxide Dismutase/genetics
16.
Int J Environ Health Res ; : 1-10, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36153821

ABSTRACT

Evidence for the increased hospitalization burden, including admissions, expenditures and length of hospital stay (LOS) for depression attributable to ambient nitrogen dioxide (NO2) is lacking. We investigated the associations between short-term exposure to ambient NO2 and attributable admissions, hospitalization expenditures and LOS for depression in 57 Chinese cities during 2013-2017 using a well-established two-stage time-series study approach. Short-term exposure to ambient NO2 was associated with significantly increased admissions, hospitalization expenditures and LOS for depression, and the attributable fractions were 6.87% (95% CI: 2.90%, 10.65%), 7.12% (3.01%, 11.04%) and 6.12% (2.59%, 9.50%) at lag02, respectively. The projected total attributable admissions, hospitalization expenditures and LOS for depression related to ambient NO2 at the national level were 23,335 (9,863, 36,181) admissions, 318.70 (134.43, 492.21) million CNY and 539.55 (227.99, 836.99) thousand days during the study period, respectively. Short-term exposure to ambient NO2 is associated with increased hospitalization burden for depression.

17.
Chemosphere ; 308(Pt 3): 136437, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36126736

ABSTRACT

Wearing a respirator is generally the most convenient individual intervention against ambient particulate matter (PM), and therefore there has been considerable research into its effectiveness. However, the effects of respirator intervention under different PM concentration settings have been insufficiently elucidated. We conducted a randomized, blinded, crossover intervention study in four representative cities in China in which 128 healthy university students spent 2-h walking along a busy road wearing either a real or a sham respirator and then spent the next 5-h indoors away from traffic pollution. Lung function, blood pressure, and heart rate variability were continuously measured throughout the visit. Linear mixed-effect models were fitted to evaluate the protective effects of respirator intervention on the cardiopulmonary indicators. Results showed that the beneficial effects of respirator intervention were only occasionally significant at specific time points or in specific cities or in selected parameters. Overall, respirator intervention was associated with reduced SBP (6.2 vs. 11.5 mmHg compared to baseline, p < 0.05) and increased LF (44 vs. 35 ms2 compared to baseline, p < 0.05) over the 2-h walk, but no significant effects were found over the 7-h period. Respirators have significant effect modifications on the associations between PM2.5/PM10 and the cardiopulmonary indicators, but the directions of effects were inconsistent. The intercity difference in the effects of respirator intervention was found significant, with Taiyuan and Shanghai to be the two cities with lower personal PM concentrations but more pronounced benefits. In conclusion, reducing personal exposure to PM can have some beneficial effects in some scenarios. However, respirators may not provide sufficient protection from air pollution overall, and we should avoid over-reliance on respirators and accelerate efforts to reduce emissions of pollutants in the first place. Despite standardized procedures, we found inconsistency in results across cities, consistent with the previous literature.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Air Pollutants/analysis , Air Pollution/analysis , China , Cities , Environmental Exposure/analysis , Humans , Particulate Matter/analysis , Ventilators, Mechanical , Young Adult
18.
Sci Total Environ ; 850: 158019, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35973547

ABSTRACT

Forest environment has many health benefits, and negative air ions (NAI) is one of the major forest environmental factors. Many studies have explored the effect of forest environment on cardiac autonomic nervous function, while forest NAI in the among function and the underlying mechanism still remain unclear. To explore the associations and molecular linkages between short-term exposure to forest NAI and heart rate variability (HRV), a repeated-measure panel study was conducted among 31 healthy adults. Participants were randomly selected to stay in a forest park for 3 days and 2 nights. Individual exposures including NAI were monitored simultaneously and HRV indices were measured repeatedly at the follow-up period. Urine samples were collected for non-targeted metabolomics analysis. Mixed-effect models were adopted to evaluate associations among NAI, HRV indices and metabolites. The median of NAI concentration was 68.11 (138.20) cm-3 during the study period. Short-term exposure to forest NAI was associated with the ameliorative HRV indices, especially the excitatory parasympathetic nerve. For instance, per interquartile range increase of 5-min moving average of NAI was associated with 9.99 % (95%CI: 8.95 %, 11.03 %) increase of power in high frequency. Eight metabolites were associated with NAI exposure. The down-regulated tyrosine metabolism was firstly observed, followed by other amino acid metabolic alterations. The NAI-related metabolic changes reflect the reduction of inflammation and oxidative stress. HRV indices were associated with 25 metabolites, mainly including arginine, proline and histidine metabolism. Short-term exposure to forest NAI is beneficial to HRV, especially to the parasympathetic nerve activity, by successively disturbing different metabolic pathways which mainly reflect the increased anti-inflammation and the reduced inflammation. The results will provide epidemiological evidences for developing forest therapy and improving cardiac autonomic nervous function.


Subject(s)
Air Pollutants , Particulate Matter , Adult , Air Pollutants/analysis , Arginine/analysis , Forests , Heart Rate , Histidine/analysis , Histidine/pharmacology , Humans , Ions/analysis , Particulate Matter/analysis , Proline/analysis , Proline/pharmacology , Tyrosine/analysis , Tyrosine/pharmacology
20.
Environ Res ; 214(Pt 2): 113888, 2022 11.
Article in English | MEDLINE | ID: mdl-35850294

ABSTRACT

Noise pollution has been documented to increase the risks of cardiovascular disorders, which can be predicted by heart rate variability (HRV), nevertheless, there has been limited evidence on the modifiers of noise pollution. Environmental fine particulate matter (PM2.5) and obesity status are both growing major concerns of cardiovascular disease burden. Our study aims to investigate whether these two factors may modify the associations between noise exposure and HRV indices. An investigation was performed on 97 (53 normal-weight and 44 obese) participants aged 18-26 years, with continuous 5-min personal exposure assessment and ambulatory electrocardiogram monitoring for 24 h. This study found that personal exposure to noise was associated with decreased HRV level and imbalanced cardiac autonomic function, as indicated by decreases in standard deviation of normal-to-normal intervals (SDNN), square root of the mean squared differences of successive intervals (rMSSD), the percentage of R-R intervals that differ from each other by more than 50 ms (pNN50), low-frequency (LF) power, high-frequency (HF) power, and increases in LF-HF-Ratio. Stronger associations between personal noise exposure and HRV indices were observed among obese participants and participants with higher PM2.5 exposure levels compared to their counterparts. For SDNN, a 1 dB(A) increment in personal noise exposure at 3h-average was associated with a 1.25% (95%CI: -1.64%, -0.86%) decrease among obese participants, and a 0.11% (95%CI: -0.38%, 0.16%) decrease among normal-weight participants (P for subgroup difference<0.001); and a 0.87% (95%CI: -1.20%, -0.54%) decrease among participants with higher PM2.5 exposure levels, and a 0.22% (95%CI: -0.58%, 0.14%) decrease among participants with lower PM2.5 exposure levels (P for subgroup difference = 0.008). Obesity and PM2.5 may aggravate the adverse effects of noise on HRV, which has implications for targeted prevention of cardiovascular disease burden associated with noise pollution.


Subject(s)
Air Pollutants , Cardiovascular Diseases , Adult , Air Pollutants/analysis , Heart Rate , Humans , Obesity/epidemiology , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...