Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 13: 1084236, 2022.
Article in English | MEDLINE | ID: mdl-36726457

ABSTRACT

Over the years, the vaste expansion of plastic manufacturing has dramatically increased the environmental impact of microplastics [MPs] and nanoplastics [NPs], making them a threat to marine and terrestrial biota because they contain endocrine disrupting chemicals [EDCs] and other harmful compounds. MPs and NPs have deleteriouse impacts on mammalian endocrine components such as hypothalamus, pituitary, thyroid, adrenal, testes, and ovaries. MPs and NPs absorb and act as a transport medium for harmful chemicals such as bisphenols, phthalates, polybrominated diphenyl ether, polychlorinated biphenyl ether, organotin, perfluorinated compounds, dioxins, polycyclic aromatic hydrocarbons, organic contaminants, and heavy metals, which are commonly used as additives in plastic production. As the EDCs are not covalently bonded to plastics, they can easily leach into milk, water, and other liquids affecting the endocrine system of mammals upon exposure. The toxicity induced by MPs and NPs is size-dependent, as smaller particles have better absorption capacity and larger surface area, releasing more EDC and toxic chemicals. Various EDCs contained or carried by MPs and NPs share structural similarities with specific hormone receptors; hence they interfere with normal hormone receptors, altering the hormonal action of the endocrine glands. This review demonstrates size-dependent MPs' bioaccumulation, distribution, and translocation with potential hazards to the endocrine gland. We reviewed that MPs and NPs disrupt hypothalamic-pituitary axes, including the hypothalamic-pituitary-thyroid/adrenal/testicular/ovarian axis leading to oxidative stress, reproductive toxicity, neurotoxicity, cytotoxicity, developmental abnormalities, decreased sperm quality, and immunotoxicity. The direct consequences of MPs and NPs on the thyroid, testis, and ovaries are documented. Still, studies need to be carried out to identify the direct effects of MPs and NPs on the hypothalamus, pituitary, and adrenal glands.


Subject(s)
Endocrine Disruptors , Microplastics , Animals , Male , Plastics , Semen/chemistry , Endocrine Disruptors/toxicity , Endocrine Disruptors/analysis , Mammals , Hormones
2.
Ecotoxicol Environ Saf ; 228: 113032, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34856487

ABSTRACT

The construction of hydropower projects discharges effluents to aquatic bodies. The effluents consist of different chemicals including heavy metals. The current study assessed the effects of effluents discharged from an under-construction hydropower project on the bioaccumulation of heavy metals in the tissues of critically endangered Tor putitora (Hamilton, 1822) in the river Panjkora. The subsequent toxic impacts of higher bioaccumulation of heavy metals on different biochemical, hematological, and serum biochemical profiles were also studied. Different biochemical changes were observed in the tissues of T. putitora including stress biomarkers such as reactive oxygen species, lipid peroxidation, total protein contents, antioxidant enzymes (peroxidase, superoxide dismutase, catalase, reduced glutathione, glutathione reductase, and glutathione-s-transferase), acetylcholinesterase, and whole-body cortisol. The hematotoxic effects were also observed as the count of red blood cells, hematocrit, and hemoglobin decreased whereas the count of white blood cells increased. Serum biochemical analysis revealed that cholesterol, urea, total bilirubin, and glucose concentration increased, whereas total proteins and albumin decreased with an increase in the concentration of heavy metals across the sampling sites. The fish from the river was found to be under severe stress as compared to the fish from the reference site. To mitigate the current scenario, stocking fish in an appropriate amount is suggested. The fish diversity and water quality should be assessed at regular intervals to avoid further deterioration and diversity loss. The safety and conservation of wild fisheries should be ensured by implementing strict environmental protection and fishing laws.

3.
Opt Express ; 26(12): 15585-15593, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-30114817

ABSTRACT

Room-temperature thermal detection at a wavelength of 2 µm in the short-wave infrared range (1.7-3 µm) was demonstrated for the first time using a Nb5N6 microbolometer. The photothermal responses of two types of Nb5N6 microbolometers were evaluated. By suspending Nb5N6 microwires in the air above the substrate, a reduction in thermal conductance of the device by a factor of 39 was achieved. The measured optical voltage responsivity RO of the Nb5N6 microbolometer reached the value of 61.5 V/W. A noise equivalent power of 8.5 × 10-11 W/√Hz (at 1 kHz) and a detectivity D* = 2.0 × 107 cm√Hz /W with a typical response time as small as 0.17 ms was obtained at a wavelength of 2 µm for a 10 × 30-µm2 device. The performance could be improved further by optimizing the design and operating parameters. This study revealed a simple low-cost technique to develop a large-scale focal plane array in silicon for infrared detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...