Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 931: 172921, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38697533

ABSTRACT

Sulfur hexafluoride (SF6), recognized as a potent greenhouse gas with significant contributions to climate change, presents challenges in understanding its degradation processes. Molecular dynamics simulations are valuable tools for understanding modes of decomposition while the traditional approaches face limitations in time scale and require unrealistically high temperatures. The collective variable-driven hyperdynamics (CVHD) approach has been introduced to directly depict the pyrolysis process for SF6 gas at practical application temperatures, as low as 1600 K for the first time. Achieving an unprecedented acceleration factor of up to 107, the method extends the simulation time scale to milliseconds and beyond while maintaining consistency with experimental and theoretical models. The differences in the reaction process between simulations conducted at actual and elevated temperatures have been noted, providing insights into SF6 degradation pathways. The work provides a basis for the further studies on the thermal degradation of pollutants.

2.
Nanotechnology ; 35(3)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37666245

ABSTRACT

SF6/N2mixture is an alternative gas of SF6, which is already used in electrical equipment. When a malfunction occurs , SF6/N2will decompose and further react with trace water and oxygen to produce nitrogen-containing gases such as NO, NO2, N2O and NF3. It is necessary to monitor these gases to ensure the safe operation of the equipment. This paper is based on density functional theory (DFT), the nanomaterial Ti3C2Txdoped with Au atom was selected as sensing material. The result shows that Au/Ti3C2Txhas larger adsorption energy when NO and NO2adsorbed on the surface, the stable structures were conformed more easily with NO and NO2compared with N2O and NF3. The density of states analysis and the frontier molecule orbital analysis reveal more change of the system before and after NO and NO2adsorption, suggesting the material showed good sensitivity performance to NO and NO2. Thus, Au/Ti3C2Txis considered to have the potential for sensing NO and NO2.

SELECTION OF CITATIONS
SEARCH DETAIL
...