Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(30): 36539-36549, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37469023

ABSTRACT

The development of an electronic nose (E-nose) for rapid explosive trace detection (ETD) has been extensively studied. However, the extremely low saturated vapor pressure of explosives becomes the major obstacle for E-nose to be applied in practical environments. In this work, we innovatively combine the decomposition characteristics of nitro explosives when exposed to ultraviolet light into gas sensors for detecting explosives, and an E-nose consisting of a SnO2/WO3 nanocomposite-based chemiresistive sensor array with an artificial neural network is utilized to identify trace nitro-explosives by detecting their photolysis gas products, rather than the explosive molecules themselves or their saturated vapor. The ultralow detection limits for nitro-explosives can be achieved, and the detection limits toward three representative nitro-explosives of trinitrotoluene, pentaerythritol tetranitrate, and cyclotetramethylene tetranitroamine are as low as 500, 100, and 50 ng, respectively. Moreover, by extracting the features of sensor responses within 15 s, a classification system based on convolutional neural network (CNN) and long short-term memory network (LSTM) is introduced to realize fast and accurate classification. The 5-fold cross-validation results demonstrate that the CNN-LSTM model exhibits the highest classification accuracy of 97.7% compared with those of common classification models. This work realizes the detection of explosives photolysis gases using sensor technology, which provides a unique insight for the classification of trace explosives.

2.
ACS Appl Mater Interfaces ; 15(23): 28358-28369, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37259980

ABSTRACT

Explosives can be analyzed for their content by detecting the photolytic gaseous byproducts. However, to prevent electrostatic sparking, explosives are frequently preserved in conditions with low temperatures and high humidity, impeding the performance of gas detection. Thus, it has become a research priority to develop gas sensors that operate at ambient temperature and high humidity levels in the realm of explosive breakdown gas-phase detection. In this work, 3-aminopropyltriethoxysilane (APTES) self-assembled monolayer-functionalized tin diselenide (APTES-SnSe2) nanosheets were synthesized via a facile solution stirring strategy, resulting in a room-temperature NO2 sensor with improved sensitivity and humidity tolerance. The APTES-SnSe2 sensor with moderate functionalization time outperforms the pure SnSe2 sensor in terms of the response value (317.51 vs 110.98%) and response deviation (3.11 vs 24.13%) under humidity interference to 500 ppb NO2. According to density functional theory simulations, the stronger adsorption of terminal amino groups of the APTES molecules to NO2 molecules and stable adsorption energy in the presence of H2O are the causes of the improved sensing capabilities. Practically, the APTES-SnSe2 sensor achieves accurate detection of photolysis gases from trace nitro explosives octogen, pentaerythritol tetranitrate, and trinitrotoluene at room temperature and various humidity levels. This study provides a potential strategy for the construction of gas sensors with high responsiveness and antihumidity capabilities to identify explosive content in harsh environments.

3.
iScience ; 26(4): 106387, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37034984

ABSTRACT

Chemiresistive gas sensors generally surfer from low selectivity, inferior anti-humidity, low response signal or signal-to-noise ratio, severely limiting the precise detection of chemical agents. Herein, we exploit high-performance gas sensors based on topological insulator Bi2Se3 that is distinguished from conventional materials by robust metallic surface states protected by time-reversal symmetry. In the presence of Se vacancies, Bi2Se3 nanosheets exhibit excellent gas sensing capability toward NO2, with a high response of 93% for 50 ppm and an ultralow theoretical limit of detection concentration about 0.06 ppb at room temperature. Remarkably, Bi2Se3 demonstrates ultrahigh anti-humidity interference characteristics, as the response with standard deviation of only 3.63% can be achieved in relative humidity range of 0-80%. These findings are supported by first-principles calculations, with analyses on adsorption energy and charge transfer directly revealing the anti-humidity and selectivity. This work may pave the way for implementation of exotic quantum states for intelligent applications.

4.
Langmuir ; 38(45): 13833-13840, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36322166

ABSTRACT

Metal-oxide-based chemiresistive hydrogen sensors exhibit high sensitivity, long-term stability, and low cost and have been extensively applied in safety monitoring of H2. However, the sensing performances are dramatically affected by the water vapor, resulting in reduced response value and increased response/recovery time. To improve the anti-humidity property of sensors, coating the breathable and hydrophobic membrane on the surface of the sensing film is an effective strategy. In this work, the poly[4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole-co-tetrafluoroethylene] (Teflon AF-2400) was dip-coated on the surface of SnO2 in a commercial hydrogen sensor (TGS2615) as a breathable and hydrophobic membrane. For safety, He instead of H2 was used to test the gas permeability of membranes. The Teflon membrane shows a high He permeability of up to 40,700 Barrer and an excellent He/H2O selectivity of 99. Moreover, Teflon shows high processability to form a defect-free coating on the rough surface of the sensing film and high chemical stability under the operando condition of the sensor. Thus, the Teflon-modified sensor possesses excellent selectivity with a value of 5, and the resistance is stable at 10,554 ± 3% Ω for 20 days in 80% RH. The modified sensor shows an improved anti-humidity property with a 75% response to 200 ppm H2 at 80% RH and has a low coefficient of variation value of 7.23% that shows advances than other reported sensors modified by coatings. The commercially available Teflon and the simple coating technology make the strategy easily scale up and show promising applications.

5.
J Hazard Mater ; 426: 128061, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34953260

ABSTRACT

The detection of air pollutant nitrogen dioxide (NO2) is of great importance arising from its great harm to the ecological environment and human health. However, the detection range of most NO2 sensors is ppm-level, and it is still challenging to achieve lower concentration (ppb-level) NO2 detection. Herein, 2D tin diselenide nanoflakes decorated with 1D zinc oxide nanowires (SnSe2/ZnO) heterojunctions were first reported by facile hydrothermal and ultra-sonication methods. The response of the fabricated SnSe2/ZnO sensor enhances 3.41 times on average compared with that of pure SnSe2 sensor to 50-150 ppb NO2 with a high detection sensitivity (22.57 ppm-1) at room temperature. In addition, the SnSe2/ZnO sensor has complete recovery, negligible cross-sensitivity, and small relative standard deviation (6.98%) during the 1 month sensing test, which can meet the requirements for NO2 detection in environmental monitoring. The enhanced NO2 sensing performance can be attributed to the n-n heterojunction constructed between SnSe2 and ZnO. The as-prepared sensor based on SnSe2/ZnO hybrid significantly promotes the development of the low detection limit of the NO2 sensor at room temperature.


Subject(s)
Nanowires , Zinc Oxide , Humans , Limit of Detection , Nitrogen Dioxide , Temperature
6.
J Hazard Mater ; 416: 126171, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492947

ABSTRACT

The gaseous volatile organic compounds (VOCs) sensors with high-selectivity and low-power consumption have been expected for practical applications in environmental monitoring and disease diagnosis. Herein, we demonstrate a room-temperature VOCs gas sensor with enhanced performance based on Ti3C2Tx-TiO2 nanocomposites. The Ti3C2Tx-TiO2 nanocomposites with regular morphology are successfully synthesized via a facile one-step hydrothermal synthesis strategy by using Ti3C2Tx itself as titanium source. Attributed to the formation of interfacial heterojunctions and the modulation of carrier density, the Ti3C2Tx-TiO2 sensor exhibits about 1.5-12.6 times enhanced responses for the detection of various VOCs at room temperature than pure MXene sensor. Moreover, the nanocomposite sensor has better response to hexanal, both an air pollutant and a typical lung cancer biomarker. The gas response of the Ti3C2Tx-TiO2 sensor towards 10 ppm hexanal is about 3.4%. The hexanal gas sensing results display that the nanocomposite sensor maintains a high signal-to-noise ratio and the lower detection limit to hexanal gas is as low as 217 ppb. Due to the low power consumption and easy fabrication process, the Ti3C2Tx-TiO2 nanocomposite sensor is promising for application in IoT environmental monitoring as well as real-time health monitoring.


Subject(s)
Nanocomposites , Volatile Organic Compounds , Gases , Temperature , Titanium
7.
J Hazard Mater ; 416: 126218, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34492975

ABSTRACT

Low energy consumption, high sensing response and high selectivity are the important indexes of metal oxide semiconductor (MOS) gas sensors applied in many application fields. However, the high working temperature and poor selectivity of MOS sensors severely restrict their scope of application in the Internet of Things (IoT). Herein, ternary MoS2-rGO-Cu2O (MG-Cu) composites with boosting ppb-level NO2 sensing characteristics are synthesized by combining hydrothermal method and soft-template method. The optimal proportion of MoS2, rGO and Cu2O is systematically explored. The SEM and TEM analyses confirm the hollow Cu2O is anchored on the surface of MG. The gas sensing tests illustrate that optimum composite sensor exhibits highest response to 500 ppb NO2 at room temperature, which is 11 and 5 times higher compared to pure MoS2 and binary MG15, respectively. Besides, it displays excellent selectivity and superior stability. The synergy of shell-structure with abundant mesoporous, heterojunction construction and enhanced conductivity lead to the enhanced sensing performance of ternary sensor.

8.
ACS Appl Mater Interfaces ; 13(23): 27188-27199, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34096254

ABSTRACT

Humidity sensors with good repeatability, low hysteresis, and low-power consumption are increasingly important for environmental monitoring and industrial control applications. Herein, an impedance-type humidity sensor under low working voltage (5 mV) utilizing a rGO-BiVO4 nanocomposite is demonstrated. The rGO-BiVO4 humidity sensor exhibits superior sensing performances, including good repeatability, negligible hysteresis (0.47%), fast response and recovery time, low power consumption, good stability, and anti-interference ability. The ultraviolet-visible absorption spectrum reveals that the narrow band gap of the rGO-BiVO4 nanocomposite is conductive to the electron transfer. The complex impedance spectra and the energy band structure analysis further suggest that the boosted humidity performance results from the formation of a heterojunction and the decrease of the heterojunction barrier height. The facile fabrication route, enhanced sensing performance, and excellent device reliability make the rGO-BiVO4 sensor highly attractive for high-end humidity sensing applications.

9.
J Colloid Interface Sci ; 595: 6-14, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33813226

ABSTRACT

Low-power consumption and high sensitivity are highly desirable for a vast range of NH3 sensing applications. As a new type of two-dimension (2D) material, Ti3C2Tx is extensively studied for room temperature NH3 sensors recently. However, the Ti3C2Tx MXene based gas sensors suffer mainly from low sensitivity. Herein, we report a sensitive Ti3C2Tx/WO3 composite resistive sensor for NH3 detection. The Ti3C2Tx/WO3 composite consisting of WO3 nanoparticles anchored on Ti3C2Tx nanoflakes were synthesized successfully with a facile ultra-sonication technique. The composite sensor with optimized components exhibits a high sensitivity of 22.3% for 1 ppm NH3 at room temperature, which is 15.4 times higher than the pure Ti3C2Tx sensor. Furthermore, the composite sensor has excellent reproducibility, good long-term stability, and high selectivity to NH3. The relative humidity influence on NH3 gas sensing properties of the sensors was systematically studied. This research provides an efficient route for the preparation of novel MXene-based sensitive materials for high-performance NH3 sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...