Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
PNAS Nexus ; 3(4): pgae142, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38689709

ABSTRACT

China is one of the largest producers and consumers of coal in the world. The National Action Plan on Air Pollution Prevention and Control in China (2013-2017) particularly aimed to reduce emissions from coal combustion. Here, we show whether the acute health effects of PM2.5 changed from 2013 to 2018 and factors that might account for any observed changes in the Beijing-Tianjin-Hebei (BTH) and the surrounding areas where there were major reductions in PM2.5 concentrations. We used a two-stage analysis strategy, with a quasi-Poisson regression model and a random effects meta-analysis, to assess the effects of PM2.5 on mortality in the 47 counties of BTH. We found that the mean daily PM2.5 levels and the SO42- component ratio dramatically decreased in the study period, which was likely related to the control of coal emissions. Subsequently, the acute effects of PM2.5 were significantly decreased for total and circulatory mortality. A 10 µg/m3 increase in PM2.5 concentrations was associated with a 0.16% (95% CI: 0.08, 0.24%) and 0.02% (95% CI: -0.09, 0.13%) increase in mortality from 2013 to 2015 and from 2016 to 2018, respectively. The changes in air pollution sources or PM2.5 components appeared to have played a core role in reducing the health effects. The air pollution control measures implemented recently targeting coal emissions taken in China may have resulted in significant health benefits.

2.
Angew Chem Int Ed Engl ; : e202406597, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757727

ABSTRACT

Artificial interfaces provide a comprehensive approach to controlling zinc dendrite and surface corrosion in zinc-based aqueous batteries (ZABs). However, due to consistent volume changes during zinc plating/stripping, traditional interfacial layers cannot consistently adapt to the dendrite surface, resulting in uncontrolled dendrite growth and hydrogen evolution. Herein, dynamic covalent bonds exhibit the Janus effect towards zinc deposition at different current densities, presenting a holistic strategy for stabilizing zinc anode. The PBSC intelligent artificial interface consisting of dynamic B-O covalent bonds is developed on zinc anode to mitigate hydrogen evolution and restrict dendrite expansion. Owing to the reversible dynamic bonds, PBSC exhibits shape self-adaptive characteristics at low current rates, which rearranges the network to accommodate volume changes during zinc plating/stripping, resisting hydrogen evolution. Moreover, the rapid association of B-O dynamic bonds enhances mechanical strength at dendrite tips, presenting a shear-thickening effect and suppressing further dendrite growth at high current rates. Therefore, the assembled symmetrical battery with PBSC maintains a stable cycle of 4500 hours without significant performance degradation and the PBSC@Zn||V2O5 pouch cell demonstrates a specific capacity exceeding 170 mAh g-1. Overall, the intelligent interface with dynamic covalent bonds provides innovative approaches for zinc anode interfacial engineering and enhances cycling performance.

3.
Insects ; 15(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38786892

ABSTRACT

Augmentative release of parasitoids has been an important component of integrated insect management for stored product protection. Understanding the effect of different temperatures on the growth and development of parasitoids is in favor of mass rearing of parasitoids. Habrobracon hebetor Say (Hymenoptera: Braconidae) is a highly cosmopolitan, gregarious ecto-parasitoid of a variety of Lepidopterous larvae. Thus, the growth and development of H. hebetor reared on Ephestia elutella (Hübner) (Lepidoptera: Pyralidae) larvae were investigated at 15, 20, 25, 30, and 35 °C. Habrobracon hebetor could complete growth and development, and the developmental duration decreased with increasing temperature at 15, 20, 25, 30, and 35 °C. The development threshold temperatures of H. hebetor eggs, larvae, pupae, and egg-to-adult stages were 13.89, 6.39, 9.24, and 9.29 °C, and the effective accumulated temperatures were 23.33, 46.40, 142.68, and 240.31 °C·d, respectively. The total number of eggs laid by H. hebetor, the hatching rate of H. hebetor eggs, and the percentage of female offspring reached the maximum of 192.39, 83.89%, and 74.04% at 30 °C, respectively. There was no significant difference in pupal survival rate in the temperature range of 15 °C to 35 °C. At 30 °C, the pre-oviposition duration of H. hebetor was the shortest (0.87 d). Therefore, the optimal rearing temperature of H. hebetor was 30 °C. The present results are useful for the large-scale rearing of H. hebetor using E. elutella larvae as hosts and effectively implementing the biological control of stored-product insects.

4.
Transplant Proc ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38816291

ABSTRACT

Caroli disease (CD) is a congenital disease of the intrahepatic biliary system, which manifests as cystic dilatation of the intrahepatic bile ducts. The disease has a low incidence and atypical clinical manifestations; therefore, it can be easily misdiagnosed. Hepatitis B infection is a viral infection that affects liver cells, leading to degeneration, necrosis, and regeneration of the cells and formation of false lobules, and ultimately nodular cirrhosis, which can lead to liver dysfunction and liver failure. Herein, we report a case of decompensated liver cirrhosis because of a diffuse form of CD, which was misdiagnosed because of long-term hepatitis B virus (HBV) infection. Finally, orthotopic liver transplantation (OLT) was performed, and the patient was cured. We believe that this congenital factor combined with HBV infection accelerated cirrhosis progression in this patient. This transplant was carried out in accordance with the Helsinki Congress and the Declaration of Istanbul.

5.
J Org Chem ; 89(11): 7573-7578, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38781561

ABSTRACT

The catalytic asymmetric conjugate addition of phosphorus nucleophiles to unsaturated compounds, catalyzed by metallic or nonmetallic catalysts, has been extensively developed. However, the enantioselective transformations involving α,ß-unsaturated carboxylic esters for constructing chiral c-p bonds have been rarely reported, particularly in metal-free processes. In this study, we present a novel metal-free methodology for enantioselective 1,4-addition of diarylphosphine oxides to α,ß-unsaturated carboxylic esters using classical chiral oxazaborolidine catalysts. Remarkably high yields and enantioselectivities were obtained for most of the products. Furthermore, these valuable chiral phosphorus esters serve as crucial intermediates that can be transformed into various derivatives including amides, acids, and alcohols in a single step.

6.
Chin Med ; 19(1): 70, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750545

ABSTRACT

BACKGROUND: Gynostemma pentaphyllum (Thunb.) Makino, commonly known as "southern ginseng", contains high amounts of ginsenoside derivatives and exhibits similar biological activities with Panax ginseng (C. A. MEY) (ginseng), which is usually used as a low-cost alternative to ginseng. G. pentaphyllum has therapeutic effects on liver diseases. However, the mechanisms underlying its hepatoprotective action have not been fully elucidated. METHODS: The protective effects of the ethanolic extract of G. pentaphyllum (GPE) were evaluated using an experimental carbon tetrachloride (CCl4)-induced liver disease model. Potential targets of GPE were predicted using the "Drug-Disease" bioinformatic analysis. Furthermore, comprehensive network pharmacology and transcriptomic approaches were employed to investigate the underlying mechanisms of GPE in the treatment of liver disease. RESULTS: The pathological examinations showed that GPE significantly alleviated hepatocyte necrosis and liver injury. GPE significantly downregulated Bax and cleaved-PARP expression and upregulated Bcl-2 expression during CCl4-induced hepatocyte apoptosis. We compared the effects of four typical compounds in GPE -a ginsenoside (Rb3) shared by both GPE and ginseng and three unique gypenosides in GPE. Notably, Gypenoside A (GPA), a unique saponin in GPE, markedly reduced hepatocyte apoptosis. In contrast, ginsenoside Rb3 had a weaker effect. Network pharmacology and transcriptomic analyses suggested that this anti-apoptotic effect was achieved by upregulating the PI3K/Akt signaling pathway mediated by PDK1. CONCLUSIONS: These results suggested that G. pentaphyllum had a promising hepatoprotective effect, with its mechanism primarily involving the upregulation of the PDK1/Bcl-2 signaling pathway by GPA, thereby preventing cell apoptosis.

7.
Polymers (Basel) ; 16(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674963

ABSTRACT

Weak bonds usually make macromolecules stronger; therefore, they are often used to enhance the mechanical strength of polymers. Not enough studies have been reported on the use of weak bonds in flame retardants. A water-soluble polyelectrolyte complex composed of polyethyleneimine (PEI), sodium tripolyphosphate (STPP) and melamine (MEL) was designed and utilized to treat bio-based polyamide 56 (PA56) by a simple three-step process. It was found that weak bonds cross-linked the three compounds to a 3D network structure with MEL on the surface of the coating under mild conditions. The thermal stability and flame retardancy of PA56 fabrics were improved by the controlled coating without losing their mechanical properties. After washing 50 times, PA56 still kept good flame retardancy. The cross-linking network structure of the flame retardant enhanced both the thermal stability and durability of the fabric. STPP acted as a catalyst for the breakage of the PA56 molecular chain, PEI facilitated the char formation and MEL released non-combustible gases. The synergistic effect of all compounds was exploited by using weak bonds. This simple method of developing structures with 3D cross-linking using weak bonds provides a new strategy for the preparation of low-cost and environmentally friendly flame retardants.

8.
Chemistry ; : e202401017, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652470

ABSTRACT

Here we introduce a metal-free, catalytic and enantioselective strategy from α,ß-unsaturated 2-acyl imidazoles to the chiral phosphorous 2-acyl imidazoles. Interestingly, this methodology was catalyzed by the classical and commercial oxazaborolidine under mild conditions. This strategy features a wide range of substrates scope with good yields and excellent enantioselectivities. The possible mechanism further suggests the key of this reaction through the cleavage of diarylphosphine oxides using Frustrated Lewis Pairs theory.

9.
J Environ Sci (China) ; 143: 126-137, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38644011

ABSTRACT

Radioisotope leaking from nuclear waste has become an intractable problem due to its gamma radiation and strong water solubility. In this work, a novel porous ZnFC-PA/PSF composite sphere was fabricated by immobilization of ferrocyanides modified zinc phytate into polysulfone (PSF) substrate for the treatment of Cs-contaminated water. The maximum adsorption capacity of ZnFC-PA/PSF was 305.38 mg/g, and the removal efficiency of Cs+ was reached 94.27% within 2 hr. The ZnFC-PA/PSF presented favorable stability with negligible dissolution loss of Zn2+ and Fe2+ (< 2%). The ZnFC-PA/PSF achieved high-selectivity towards Cs+ (Kd = 2.24×104 mL/g) even in actual geothermal water. The adsorption mechanism was inferred to be the ion-exchange between Cs+ and K+. What's more, ZnFC-PA/PSF worked well in the fixed-bed adsorption (E = 91.92%), indicating the application potential for the hazardous Cs+ removal from wastewater.


Subject(s)
Water Pollutants, Chemical , Adsorption , Water Pollutants, Chemical/chemistry , Water Purification/methods , Sulfones/chemistry , Polymers/chemistry , Porosity , Cesium/chemistry , Waste Disposal, Fluid/methods , Zinc/chemistry , Wastewater/chemistry
10.
J Colloid Interface Sci ; 667: 607-616, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38657544

ABSTRACT

Prussian blue analogues (PBAs) are regarded as promising cathode materials for ammonium-ion batteries (AIBs) because of their low cost and superb theoretical capacity. However, its inherently poor conductivity and structural collapse can significantly limit the enhancement of rate property and cycling stability. In this work, Berlin Green (BG) electrode materials with similar wool-like clusters were constructed by direct precipitation method to accelerate the kinetic, which realizes outstanding cycling stability. Berlin Green with the appropriate amount of iron (BG-2) has a fast ion transport channel, enhanced structure stability, highly reversible insertion/extraction of NH4+, and fine electrochemical reaction activity. Benefiting from the unique architecture and component, the BG-2 electrode shows an excellent rate performance with a discharge/charge specific capacity of 60.1/59.3 mAh g-1 at 5 A g-1. Even at 5 A g-1, BG-2 exhibits remarkable cycling stability with an initial discharge capacity of 59.5 mAh g-1 and a capacity retention rate of approximately 76% after 30,000 cycles. The BG-2 reveals exceedingly good electrochemical reversibility during the process of NH4+ (de)insertion. BG materials indicate huge potential as a cathode material for the next generation of high-performance aqueous batteries.

11.
Adv Mater ; : e2400508, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38452342

ABSTRACT

The confinement effect, restricting materials within nano/sub-nano spaces, has emerged as an innovative approach for fundamental research in diverse application fields, including chemical engineering, membrane separation, and catalysis. This confinement principle recently presents fresh perspectives on addressing critical challenges in rechargeable batteries. Within spatial confinement, novel microstructures and physiochemical properties have been raised to promote the battery performance. Nevertheless, few clear definitions and specific reviews are available to offer a comprehensive understanding and guide for utilizing the confinement effect in batteries. This review aims to fill this gap by primarily summarizing the categorization of confinement effects across various scales and dimensions within battery systems. Subsequently, the strategic design of confinement environments is proposed to address existing challenges in rechargeable batteries. These solutions involve the manipulation of the physicochemical properties of electrolytes, the regulation of electrochemical activity, and stability of electrodes, and insights into ion transfer mechanisms. Furthermore, specific perspectives are provided to deepen the foundational understanding of the confinement effect for achieving high-performance rechargeable batteries. Overall, this review emphasizes the transformative potential of confinement effects in tailoring the microstructure and physiochemical properties of electrode materials, highlighting their crucial role in designing novel energy storage devices.

13.
Adv Sci (Weinh) ; 11(7): e2305271, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072676

ABSTRACT

Catalytic hydrogenation of unsaturated hydrocarbons to alkenes and alkanes using molecular hydrogen is one of the most fundamental transformations in organic synthesis. While methodologies involving transition metals as catalysts in homogeneous and heterogeneous processes have been well developed, metal-free catalytic hydrogenation offers an ideal approach for future chemistry. Herein, the common and inexpensive quaternary ammonium salts are first introduced as catalysts in the catalytic hydrogenation system for the transformations from alkynes or olefins into the corresponding olefins or alkanes. Interestingly, the hydrogenation process of alkynes can be controlled to selectively produce alkenes or alkanes under different conditions. Moreover, the possible mechanism is discussed in new insights into the catalytic behavior of quaternary ammonium salts.

14.
China CDC Wkly ; 5(49): 1094-1100, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38125913

ABSTRACT

What is already known about this topic?: An association between prenatal heatwave exposure and the risk of preterm birth was found. However, the disparities in heatwave-related preterm birth across different climate types have not been examined. What is added by this report?: This nationwide case-crossover study investigated the association between heatwave exposure and preterm birth across different Köppen-Geiger climate types. Among pregnant women residing in the arid-desert-cold climate type, exposure to compound heatwaves was found to be associated with a significantly higher risk of preterm birth {adjusted odds ratios (AORs) ranged from 1.55 [95% confidence interval ( CI): 1.21-1.97] to 2.11 (95% CI: 1.35-3.31)}. In contrast, among pregnant women residing in the tropical monsoonal climate type, exposure to daytime-only heatwaves was associated with an increased risk of preterm birth [AORs ranged from 1.25 (95% CI: 1.03-1.51) to 1.37 (95% CI: 1.05-1.77)]. What are the implications for public health practice?: Specific interventions should be implemented in China to mitigate the risk of preterm birth related to heatwaves, particularly for pregnant women residing in arid-desert-cold and tropical monsoonal climates.

15.
Heliyon ; 9(11): e21385, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37954359

ABSTRACT

Background: Coronary artery dilation (CAD) had rarely been described as a cardiac complication of febrile disease other than Kawasaki disease (KD). There are rare cases complicated by CAD reported in patients with Mycoplasma pneumoniae (MP) infection. Case presentation: A 6-year-old boy with severe Mycoplasma pneumoniae pneumonia (MPP) was transferred to our hospital due to significant respiratory distress on the 11th day from disease onset. Nadroparin, levofloxacin, and methylprednisolone followed by oral prednisone were aggressively prescribed. His clinical condition gradually achieved remission, and the drugs were withdrawn on the 27th day. Regrettably, the recurrent fever attacked him again in the absence of infection-toxic manifestations. Necrotizing pneumonia (NP) was found on chest CT. And echocardiography revealed right CAD (diameter, 3.40mm; z-score, 3.8), however, his clinical and laboratory findings did not meet the diagnostic criteria of KD. CAD was proposed to result from MP infection, and aspirin was prescribed. Encouragingly, the CAD regressed one week later (diameter, 2.50mm; z-score, 1.4). Additionally, the child defervesced seven days after the initiation of prednisone and Nadroparin treatment. The patient was ultimately discharged home on the 50th day. During follow-up, the child was uneventful with normal echocardiography and fully resolved chest CT lung lesions. Conclusions: CAD can develop in patients with severe MP infection. Pediatricians should be alert to the possibility of CAD in patients with severe MP infection and recognize that CAD might also develop in febrile disease rather than KD.

16.
Nat Plants ; 9(10): 1583-1584, 2023 10.
Article in English | MEDLINE | ID: mdl-37770614
17.
Org Lett ; 25(35): 6495-6500, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37646432

ABSTRACT

Here, we report the first catalytic enantioselective 1,4-addition of diarylphosphine oxides to α,ß-unsaturated thioesters. Importantly, the most common and commercial oxazaborolidine (CBS) was employed as a catalyst for its new application without being activated by strong protonic acids or Lewis acids and led to the chiral thioesters in excellent yields and enantioselectivities. Furthermore, this method features mild reaction conditions (room temperature and air-insensitive), good substrate tolerance, and easy scalability.

18.
JAMA Netw Open ; 6(8): e2326987, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37566422

ABSTRACT

Importance: Associations between heat waves and preterm birth (PTB) have been reported. However, associations of daytime-only, nighttime-only, and compound heat waves with PTB have yet to be explored at a national level. Furthermore, possible heterogeneity across urban-rural communities with different socioeconomic statuses needs to be explored. Objective: To examine the association between daytime-only, nighttime-only, and compound heat waves and PTB in China and to find variations between urban and rural regions. Design, Setting, and Participants: This case-crossover study used nationwide representative birth data between January 1, 2012, and December 31, 2019, from China's National Maternal Near Miss Surveillance System. This multisite study covered 30 provinces in China and ensured the representation of urban and rural populations across 3 socioeconomic regions. Singleton live births delivered in the warm seasons from April to October during the study period were included. Exclusion criteria consisted of gestational age younger than 20 or older than 45 weeks, maternal ages younger than 13 or older than 50 years, conception dates earlier than 20 weeks before January 1, 2012, and later than 45 weeks before December 31, 2019, and an inconsistent combination of birthweight and gestational age according to growth standard curves of Chinese newborns. Data were analyzed from September 10, 2021, to April 25, 2023. Exposures: Eighteen definitions of heat waves by 3 distinct types, including daytime only (only daily maximum temperature exceeds thresholds), nighttime only (only daily minimum temperature exceeds thresholds), and compound (both daily maximum and minimum temperature exceeds thresholds) heat waves, and 6 indexes, including 75th percentile of daily temperature thresholds for 2 or more (75th-D2), 3 or more (75th-D3), or 4 or more (75th-D4) consecutive days and 90th percentile of daily temperature thresholds for 2 or more (90th-D2), 3 or more (90th-D3), and 4 or more (90th-D4) consecutive days. Main Outcomes and Measures: Preterm births with less than 37 completed weeks of gestation. Results: Among the 5 446 088 singleton births in the final analytic sample (maternal mean [SD] age, 28.8 [4.8] years), 310 384 were PTBs (maternal mean [SD] age, 29.5 [5.5] years). Compared with unexposed women, exposure of pregnant women to compound heat waves in the last week before delivery was associated with higher risk for PTB, with the adjusted odds ratios (AORs) ranging from 1.02 (95% CI, 1.00-1.03) to 1.04 (95% CI, 1.01-1.07) in 6 indexes. For daytime-only heat wave exposures, AORs ranged from 1.03 (95% CI, 1.01-1.05) to 1.04 (95% CI, 1.01-1.08) in the 75th-D4, 90th-D2, 90th-D3, and 90th-D4 indexes. Such associations varied by rural (AOR range, 1.05 [95% CI, 1.01-1.09] to 1.09 [95% CI, 1.04-1.14]) and urban (AOR range, 1.00 [95% CI, 0.98-1.02] to 1.01 [95% CI, 0.99-1.04]) regions during exposure to daytime-only heat waves in the 75th-D3 and 90th-D3 indexes. Conclusions and Relevance: In this case-crossover study, exposure to compound and daytime-only heat waves in the last week before delivery were associated with PTB, particularly for pregnant women in rural regions exposed to daytime-only heat waves. These findings suggest that tailored urban-rural preventive measures may improve maternal health in the context of climate change.


Subject(s)
Premature Birth , Adult , Female , Humans , Infant , Infant, Newborn , Pregnancy , China/epidemiology , Cross-Over Studies , Hot Temperature , Premature Birth/epidemiology , Rural Population
19.
Nat Plants ; 9(8): 1203-1206, 2023 08.
Article in English | MEDLINE | ID: mdl-37488267
20.
Dalton Trans ; 52(25): 8704-8715, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37309863

ABSTRACT

Ternary transition metal oxides (TMOs) are deemed as promising anode materials of Li-ion batteries (LIBs) owing to their large theoretical capacity and rich redox reaction. Nevertheless, the inherent semiconductor characteristic and enormous volume variation of TMOs during cycling bring about sluggish reaction kinetics, fast capacity fading, and poor rate capability. In this study, three-dimensional (3D) porous CoNiO2@CTP architectures, i.e., CoNiO2 microspheres combined with coal tar pitch-derived porous carbon, were designed and synthesized through a one-step hydrothermal method followed by a heat treatment process for the first time. The microsphere morphology increases the contact area between the anode and electrolyte, shortens the transport distance of Li+ ions, and reduces the agglomeration. The existence of the CTP layer provides rich charge transmission paths, improves the electronic conductivity of CoNiO2 and provides abundant active sites for Li+ storage. Owing to the synergistic effect of porous carbon and microsphere morphology of CoNiO2, the CoNiO2@CTP (10.0 wt%) anode shows remarkable electrochemical performance with a high charge capacity (1437.5 mA h g-1 at 500 mA g-1), good rate performance (839.76 mA h g-1 even at 1 A g-1), and remarkable cycle durability (741.4 mA h g-1 after 1000 cycles at 1 A g-1), which is significantly better than pristine CoNiO2. This study not only provides a simple strategy for high-value utilization of CTP but also offers cost-effective CoNiO2@CTP architectures for high-performance LIBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...