Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 279
Filter
1.
J Affect Disord ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844163

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is treated primarily using antidepressant drugs, but clinical effects may be delayed for weeks to months. This study investigated the efficacy of brief therapeutic sleep deprivation (TSD) for inducing rapid improvements in MDD symptoms. METHODS: From November 2020 to February 2023, 54 inpatients with MDD were randomly allocated to TSD and Control groups. The TSD group (23 cases) remained awake for 36 h, while the Control group (31 cases) maintained regular sleep patterns. All participants continued regular drug therapy. Mood was assessed using the 24-item Hamilton Depression Scale (HAMD-24) at baseline and post-intervention in both groups. In the TSD group, the Visual Analogue Scale (VAS) was utilized to evaluate subjective mood during and after the intervention. Cognitive function was assessed at baseline and post-intervention using the Montreal Cognitive Assessment (MoCA). Objective sleep parameters were recorded in the TSD group by polysomnography. The follow-up period spanned one week. RESULTS: HAMD-24 scores did not differ between groups at baseline or post-intervention. However, the clinical response rate was 34.8 % higher in the TSD group on day 3 post-intervention compared to the Control group (3.2 %), but not sustained by day 7. Moreover, responders demonstrated a faster improvement in the VAS score during TSD than non-responders (p = 0.047). There were no significant differences in MoCA scores or objective sleep parameters between the groups. LIMITATIONS: Small sample size and notable attrition rate. CONCLUSIONS: Therapeutic sleep deprivation can rapidly improve MDD symptoms without influencing sleep parameters or cognitive functions. Assessment of longer-term effects and identification of factors predictive of TSD response are warranted.

2.
J Neuroinflammation ; 21(1): 136, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802924

ABSTRACT

Autoimmune uveitis is a leading cause of severe vision loss, and animal models provide unique opportunities for studying its pathogenesis and therapeutic strategies. Here we employ scRNA-seq, RNA-seq and various molecular and cellular approaches to characterize mouse models of classical experimental autoimmune uveitis (EAU), revealing that EAU causes broad retinal neuron degeneration and marker downregulation, and that Müller glia may act as antigen-presenting cells. Moreover, EAU immune response is primarily driven by Th1 cells, and results in dramatic upregulation of CC chemokines, especially CCL5, in the EAU retina. Accordingly, overexpression of CCR5, a CCL5 receptor, in mesenchymal stem cells (MSCs) enhances their homing capacity and improves their immunomodulatory outcomes in preventing EAU, by reducing infiltrating T cells and activated microglia and suppressing Nlrp3 inflammasome activation. Taken together, our data not only provide valuable insights into the molecular characteristics of EAU but also open an avenue for innovative MSC-based therapy.


Subject(s)
Mesenchymal Stem Cells , Mice, Inbred C57BL , Receptors, CCR5 , Single-Cell Analysis , Uveitis , Animals , Mice , Mesenchymal Stem Cells/metabolism , Uveitis/immunology , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , Autoimmune Diseases/therapy , Gene Expression Profiling , Disease Models, Animal , Female , Single-Cell Gene Expression Analysis
3.
BMC Gastroenterol ; 24(1): 161, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741060

ABSTRACT

BACKGROUND AND AIMS: Portal vein thrombosis (PVT) is a common complication of liver cirrhosis that can aggravate portal hypertension. However, there are features of both PVT and cirrhosis that are not recapitulated in most current animal models. In this study, we aimed to establish a stable animal model of PVT and cirrhosis, intervene with anticoagulant, and explore the related mechanism. METHODS: First, 49 male SD rats received partial portal vein ligation (PPVL), and 44 survival rats were divided into 6 groups: PPVL control group; 4-week, 6 -week, 8-week, and 10-week model group; and the rivaroxaban (RIVA)-treated group. The rats were intoxicated with or without carbon tetrachloride (CCl4) for 4-10 weeks. Seven normal rats were used as the normal controls. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and parameters for blood coagulation were all assayed with kits. Liver inflammation, collagen deposition and hydroxyproline (Hyp) levels were also measured. The extrahepatic macro-PVT was observed via portal vein HE staining, etc. The intrahepatic microthrombi was stained via fibrin immunohistochemistry. The portal blood flow velocity (PBFV) and diameter were detected via color Doppler ultrasound. Vascular endothelial injury was evaluated by von Willebrand Factor (vWF) immunofluorescence. Fibrinolytic activity was estimated by western blot analysis of fibrin and plasminogen activator inhibitor-1 (PAI-1). RESULTS: After PPVL surgery and 10 weeks of CCl4 intoxication, a rat model that exhibited characteristics of both cirrhosis and extra and intrahepatic thrombi was established. In cirrhotic rats with PVT, the PBFV decreased, both factors of pro- and anti-coagulation decreased, but with relative hypercoagulable state, vascular endothelial injured, and fibrinolytic activity decreased. RIVA-treated rats had improved coagulation function, increased PBFV and attenuated thrombi. This effect was related to the improvements in endothelial injury and fibrinolytic activity. CONCLUSIONS: A new rat model of PVT with cirrhosis was established through partial portal vein ligation plus CCl4 intoxication, with the characteristics of macrothrombi at portal veins and microthrombi in hepatic sinusoids, as well as liver cirrhosis. Rivaroxaban could attenuate PVT in cirrhosis in the model rats. The underlying mechanisms of PVT formation in the rat model and pharmacological action of rivaroxaban are related to the regulation of portal blood flow, coagulant factors, and vascular endothelial cell function.


Subject(s)
Carbon Tetrachloride , Disease Models, Animal , Factor Xa Inhibitors , Portal Vein , Rats, Sprague-Dawley , Rivaroxaban , Venous Thrombosis , Animals , Rivaroxaban/pharmacology , Male , Ligation , Venous Thrombosis/etiology , Venous Thrombosis/drug therapy , Rats , Factor Xa Inhibitors/pharmacology , Liver Cirrhosis/complications , Liver Cirrhosis, Experimental/complications , Liver/metabolism , Liver/blood supply , Alanine Transaminase/blood , Aspartate Aminotransferases/blood
4.
Int J Biol Macromol ; 270(Pt 2): 132431, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759853

ABSTRACT

Escherichia coli has emerged as an important host for the production of biopharmaceuticals or other industrially relevant molecules. An efficient gene editing tool is indispensable for ensuring high production levels and optimal release of target products. However, in Escherichia coli, the CRISPR-Cas9 system has been shown to achieve gene modifications with relatively low frequency. Large-scale PCR screening is required, hindering the identification of positive clones. The beta protein, which weakly binds to single-stranded DNA but tightly associates with complementary strand annealing products, offers a promising solution to this issue. In the present study, we describe a targeted and continuous gene editing strategy for the Escherichia coli genome. This strategy involves the coexpression of the beta protein alongside the CRISPR-Cas9 system, enabling a variety of genome modifications such as gene deletion and insertion with an efficiency exceeding 80 %. The integrity of beta proteins is essential for the CRISPR-Cas9/Beta-based gene editing system. In this work, the deletion of either the N- or C-terminal domain significantly impaired system efficiency. Overall, our findings established the CRISPR-Cas9/Beta system as a suitable gene editing tool for various applications in Escherichia coli.


Subject(s)
CRISPR-Cas Systems , Escherichia coli , Gene Editing , Gene Editing/methods , CRISPR-Cas Systems/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Genome, Bacterial
5.
Heliyon ; 10(7): e28251, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38596099

ABSTRACT

Objectives: Small cell lung cancer (SCLC) shows poor prognosis since it metastasizes widely at early stage. Paired box gene (PAX) 8 is a transcriptional factor of PAX family, of which the expression in lung cancer is a controversial issue, and its prognostic value of PAX8 in SCLC is still unclear. Materials and methods: Overall, 184 subjects who were pathologically diagnosed with SCLC were enrolled in the study. Immunohistochemical analysis of PAX8 and Ki-67 were performed. The correlations between PAX8 expression and clinical features or Ki-67 index were further analyzed. Subsequently, an analysis of the association between PAX8, stage, Ki-67 status, and overall survival (OS) were performed in 169 subjects with follow-up information. Results: PAX8 was positive in 53.8% (99/184) SCLC specimens. The positive rate is significantly higher in extensive-stage specimens (61.0%) than in limited-stage specimens (45.24%). PAX8 expression is positively correlated with Ki-67 index (P = 0.001) while negatively correlated with OS (HR = 3.725, 95% CI 1.943-7.139, P<0.001). In combination groups, the PAX8 negative and limited stage group had the most promising OS. Conclusion: PAX8 expression rate in SCLC specimens is not low. It has prognostic value in small cell lung cancer.

6.
Chem Commun (Camb) ; 60(35): 4691-4694, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38592772

ABSTRACT

The first fluorescent sensor based on the indicator displacement assay (IDA) for on-site determination of etomidate.


Subject(s)
Etomidate , Fluorescent Dyes , Etomidate/analogs & derivatives , Etomidate/chemistry , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence , Animals , Humans
7.
J Voice ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38644072

ABSTRACT

BACKGROUND: It is controversial that Helicobacter pylori (H pylori) is involved in the pathogenesis or development of laryngopharyngeal reflux disease (LPRD). OBJECTIVE: To investigate the potential association between LPRD and H pylori infection. MATERIAL AND METHODS: A systematic review was performed of studies assessing the diagnosis or treatment of LPRD among patients with H pylori infection. Data sources are PubMed/MEDLINE, EMBASE[Ovid], Cochrane Library, and Web of Science, and ClinicalTrials.gov. RESULTS: Fifteen studies were analyzed in the review, with all eligible for the meta-analysis. A significant association between H pylori infection and LPRD was detected for higher rates of H pylori infection in patients with LPRD than in non-LPRD patients (relative risk (RR), 1.35; 95% CI, 1.12-1.63; P = 0.002), and H pylori-positive patients had a higher prevalence of LPRD than H pylori-negative patients (RR, 1.19; 95% CI, 1.07-1.31; P = 0.001). The prevalence of H pylori among patients with LPRD was 49% (95% CI, 36-61), the prevalence of H pylori among patients with non-LPRD was 35% (95% CI, 23-49). CONCLUSION AND SIGNIFICANCE: The limited evidence indicated the association between LPRD risk and increased H pylori infection. Different population races, diagnostic approach to LPRD, variant H pylori testing methods, age and sex may contribute to the heterogeneity. Further well-designed studies regarding the efficacy of H pylori eradication in the treatment of LPRD are strongly recommended in the future.

8.
Food Chem ; 451: 139415, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38670020

ABSTRACT

The interaction mechanism between soybean protein isolate (SPI) and furan flavor compounds with different structures is studied using spectroscopy, molecular docking, and MD simulation methods. The order of binding ability between SPI and furan flavor compounds is 2-acetylfuran>furfural>5-methylfurfural. The structural differences (position and quantity of methyl groups) of three furan flavor compounds are key factors leading to the different adsorption abilities of SPI for furan flavor compounds. The findings from spectroscopy analyses suggest that the interaction between SPI and furan flavor compounds involves both static and dynamic quenching mechanisms, with static quenching being the main factor. Molecular docking and MD simulations reveal the atomic-level mechanisms underlying the stable binding for SPI and furan flavor compounds at spatiotemporal multiscale. This study provides a theoretical framework for the production and adjustment of meat essence formula in the production of soybean protein-based meat products.


Subject(s)
Flavoring Agents , Furans , Molecular Docking Simulation , Soybean Proteins , Soybean Proteins/chemistry , Adsorption , Furans/chemistry , Flavoring Agents/chemistry , Glycine max/chemistry , Meat Products/analysis , Molecular Dynamics Simulation
9.
Angew Chem Int Ed Engl ; 63(24): e202405676, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38606914

ABSTRACT

Metal-organic framework (MOF) membranes with rich functionality and tunable pore system are promising for precise molecular separation; however, it remains a challenge to develop defect-free high-connectivity MOF membrane with high water stability owing to uncontrollable nucleation and growth rate during fabrication process. Herein, we report on a confined-coordination induced intergrowth strategy to fabricate lattice-defect-free Zr-MOF membrane towards precise molecular separation. The confined-coordination space properties (size and shape) and environment (water or DMF) were regulated to slow down the coordination reaction rate via controlling the counter-diffusion of MOF precursors (metal cluster and ligand), thereby inter-growing MOF crystals into integrated membrane. The resulting Zr-MOF membrane with angstrom-sized lattice apertures exhibits excellent separation performance both for gas separation and water desalination process. It was achieved H2 permeance of ~1200 GPU and H2/CO2 selectivity of ~67; water permeance of ~8 L ⋅ m-2 ⋅ h-1 ⋅ bar-1 and MgCl2 rejection of ~95 %, which are one to two orders of magnitude higher than those of state-of-the-art membranes. The molecular transport mechanism related to size-sieving effect and transition energy barrier differential of molecules and ions was revealed by density functional theory calculations. Our work provides a facile approach and fundamental insights towards developing precise molecular sieving membranes.

10.
Ultrason Sonochem ; 104: 106843, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38471387

ABSTRACT

The primary significance of this work is that the commercial yeast proteins particles were successfully used to characterize the high internal phase Pickering emulsions (HIPPEs). The different sonication time (0,3,7,11,15 min) was used to modulate the structure and interface characteristics of yeast proteins (YPs) that as Pickering particles. Immediately afterward, the influence of YPs particles prepared at different sonication time on the rheological behavior and coalescence mechanism of HIPPEs was investigated. The results indicate that the YPs sonicated for 7 min exhibited a more relaxed molecular structures and conformation, the smallest particle size, the highest H0 and optimal amphiphilicity (the three-phase contact (θ) was 88.91°). The transition from extended to compact conformations of YPs occurred when the sonication time exceeded 7 min, resulting in an augmentation of size of YPs particles, a reduction in surface hydrophobicity (H0), and an elevation in hydrophilicity. The HIPPEs stabilized by YPs particles sonicated for 7 min exhibited the highest adsorption interface protein percentage and a more homogeneous three-dimensional (3D) protein network, resulting in the smallest droplet size and the highest storage (G'). The HIPPEs sample that stabilized by YPs particles sonicated for 15 min showed the lowest adsorption protein percentage. This caused a reduction in the thickness of its interface protein layer and an enlargement in the droplet diameter (D [3,2]). It was prone to droplet coalescence according to the equation used to evaluate the coalescence probability of droplets (Eq (2)). And the non-adsorbed YPs particles form larger aggregation structures in the continuous phase and act as "structural agents" in 3D protein network. Therefore, mechanistically, the interface protein layer formed by YPs particles sonicated 7 min contributed more to HIPPEs stability. Whereas the "structural agents" contributed more to HIPPEs stability when the sonication time exceeded 7 min. The present results shed important new light on the application of commercial YPs in the functional food fields, acting as an available and effective alternative protein.


Subject(s)
Fungal Proteins , Sonication , Emulsions/chemistry , Hydrophobic and Hydrophilic Interactions , Particle Size
11.
Life Sci ; 344: 122452, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38462226

ABSTRACT

The intestinal tract plays a vital role in both digestion and immunity, making its equilibrium crucial for overall health. This equilibrium relies on the dynamic interplay among intestinal epithelial cells, macrophages, and crypt stem cells. Intestinal epithelial cells play a pivotal role in protecting and regulating the gut. They form vital barriers, modulate immune responses, and engage in pathogen defense and cytokine secretion. Moreover, they supervise the regulation of intestinal stem cells. Macrophages, serving as immune cells, actively influence the immune response through the phagocytosis of pathogens and the release of cytokines. They also contribute to regulating intestinal stem cells. Stem cells, known for their self-renewal and differentiation abilities, play a vital role in repairing damaged intestinal epithelium and maintaining homeostasis. Although research has primarily concentrated on the connections between epithelial and stem cells, interactions with macrophages have been less explored. This review aims to fill this gap by exploring the roles of the intestinal epithelial-macrophage-crypt stem cell axis in maintaining intestinal balance. It seeks to unravel the intricate dynamics and regulatory mechanisms among these essential players. A comprehensive understanding of these cell types' functions and interactions promises insights into intestinal homeostasis regulation. Moreover, it holds potential for innovative approaches to manage conditions like radiation-induced intestinal injury, inflammatory bowel disease, and related diseases.


Subject(s)
Intestinal Mucosa , Stem Cells , Macrophages , Epithelial Cells , Homeostasis
12.
Biofactors ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38516823

ABSTRACT

Lactate dehydrogenase A (LDHA) is highly expressed in various tumors. However, the role of LDHA in the pathogenesis of B-cell lymphoma remains unclear. Analysis of data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases revealed an elevated LDHA expression in diffuse large B-cell lymphoma (DLBC) tissues compared with normal tissues. Similarly, our results demonstrated a significant increase in LDHA expression in tumor tissues from the patients with B-cell lymphoma compared with those with lymphadenitis. To further elucidate potential roles of LDHA in B-cell lymphoma pathogenesis, we silenced LDHA in the Raji cells (a B-cell lymphoma cell line) using shRNA techniques. Silencing LDHA led to reduced mitochondrial membrane integrity, adenosine triphosphate (ATP) production, glycolytic activity, cell viability and invasion. Notably, LDHA knockdown substantially suppressed in vivo growth of Raji cells and extended survival in mice bearing lymphoma (Raji cells). Moreover, proteomic analysis identified feline sarcoma-related protein (FER) as a differential protein positively associated with LDHA expression. Treatment with E260, a FER inhibitor, significantly reduced the metabolism, proliferation and invasion of Raji cells. In summary, our findings highlight that LDHA plays multiple roles in B-cell lymphoma pathogenesis via FER pathways, establishing LDHA/FER may as a potential therapeutic target.

13.
Front Psychol ; 15: 1349370, 2024.
Article in English | MEDLINE | ID: mdl-38505364

ABSTRACT

The present study explores the intricate dynamics influencing the self-efficacy of Chinese university students through the interplay of participation in artistic activities, positive psychological capital, and emotional intelligence. In the context of technological advancements and various challenges post pandemic, this study delves into the multifaceted aspects of university life, where arts education plays a pivotal role in addressing students' emotional needs. By integrating emotional intelligence with self-efficacy, this study underscores the positive impact of artistic engagement on self-efficacy, while emphasizing on the transformative power of these pursuits. Also, this study establishes that the optimism and resilience contribute to this relationship by considering the mediating role of positive psychological capital. The moderating influence of emotional intelligence in the complex dynamics between arts education and positive psychological capital is another concern, thereby emphasizing the nuanced role of emotional intelligence. With a structured set of questions that were administered to 673 participants with 93.61% recovery rate, this study performs the Cronbach's α-test, validation factor, and several related tests in SPSSStatistics 29.0, bootstrap, and AMOS 25.0 software. Current results shows the importance of a holistic approach in Chinese institutions. With a focus on promoting artistic engagement to enhance students' self-efficacy, this study determines the profound impact of arts education on students' overall wellbeing and educational experience. In conclusion, this research highlights the constructive impact of artistic engagement on the self-efficacy of Chinese university students. Chinese institutions should encourage a varied range of artistic engagements as a response to the contemporary challenges confronted by their students.

14.
Front Vet Sci ; 11: 1335897, 2024.
Article in English | MEDLINE | ID: mdl-38410738

ABSTRACT

It has been demonstrated that supplementing late-gestation cow diets with NCG (N-carbamoylglutamic acid) increases the serum protein level, boosts immunological function, and increases the birth weight of the calves. However, the underlying mechanism remains unclear. In this experiment, 30 late-gestation Angus heifers almost at same conditions were chosen for this experiment. They were randomly divided into two groups of 15 cows each. A basal diet was provided to the control group, and 30 g/(d-head) of NCG was added to the basal diet of the test group (NCG group). Blood samples were collected from the jugular vein after birth and before the end (when the calves were 90 days old) of the experiment for plasma metabolomics analysis. The metabolomics analysis identified 53 metabolites between the NCG group and control group, with 40 significantly up-regulated and 13 significantly down-regulated. Among them, 33 lipids and lipid-like molecules made up 57.89% of all the metabolites that were found. Thirty-three metabolic pathways enriched by metabolites showed p.adjust <0.05, among which glycerophospholipid and sphingolipid metabolism pathways were the most abundant. In conclusion, the addition of NCG in late-gestation cows appears to primarily affect calf growth and development through the regulation of phospholipid metabolism, which plays a role in nerve conduction, brain activity, and cell metabolism and function. This study provides valuable insights into how nutritional supplementation by late-gestation cows might improve the growth and development of newborn calves.

15.
Front Vet Sci ; 11: 1348850, 2024.
Article in English | MEDLINE | ID: mdl-38420208

ABSTRACT

With the development of modern sheep raising technology, the increasing density of animals in sheep house leads to the accumulation of microbial aerosols in sheep house. It is an important prerequisite to grasp the characteristics of bacteria in aerosols in sheep house to solve the problems of air pollution and disease prevention and control in sheep house. In this study, the microorganisms present in the air of sheep houses were investigated to gain insights into the structure of bacterial communities and the prevalence of pathogenic bacteria. Samples from six sheep pens in each of three sheep farms, totaling 18, were collected in August 2022 from Ningxia province, China. A high-volume air sampler was utilized for aerosol collection within the sheep housing followed by DNA extraction for 16S rRNA sequencing. Employing high-throughput 16S rRNA sequencing technology, we conducted an in-depth analysis of microbial populations in various sheep pen air samples, enabling us to assess the community composition and diversity. The results revealed a total of 11,207 operational taxonomic units (OTUs) within the bacterial population across the air samples, encompassing 152 phyla, 298 classes, 517 orders, 853 families, 910 genera, and 482 species. Alpha diversity and beta diversity analysis indicated that differences in species diversity, evenness and coverage between different samples. At the bacterial phylum level, the dominant bacterial groups are Firmicutes, Proteobacteria, and Actinobacteria, among which Firmicutes (97.90-98.43%) is the highest. At the bacterial genus level, bacillus, Bacteroides, Fusobacterium, etc. had higher abundance, with Bacillus (85.47-89.87%) being the highest. Through an in-depth analysis of microbial diversity and a meticulous examination of pathogenic bacteria with high abundance in diverse sheep house air samples, the study provided valuable insights into the microbial diversity, abundance, and distinctive features of prevalent pathogenic bacteria in sheep house air. These findings serve as a foundation for guiding effective disease prevention and control strategies within sheep farming environments.

16.
BMC Vet Res ; 20(1): 20, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200549

ABSTRACT

BACKGROUND: Mycoplasma ovipneumoniae (M. ovipneumoniae) is a significant pathogen causing respiratory infections in goats and sheep. This study focuses on investigating vulnerability of Hu sheep to M. ovipneumoniae infection in the context of late spring's cold weather conditions through detailed autopsy of a severely affected Hu sheep and whole genome sequencing of M. ovipneumoniae. RESULTS: The autopsy findings of the deceased sheep revealed severe pulmonary damage with concentrated tracheal and lung lesions. Histopathological analysis showed tissue degeneration, mucus accumulation, alveolar septum thickening, and cellular necrosis. Immunohistochemistry analysis indicated that M. ovipneumoniae was more in the bronchi compared to the trachea. Genome analysis of M. ovipneumoniae identified a 1,014,835 bp with 686 coding sequences, 3 rRNAs, 30 tRNAs, 6 CRISPRs, 11 genomic islands, 4 prophages, 73 virulence factors, and 20 secreted proteins. CONCLUSION: This study investigates the vulnerability of Hu sheep to M. ovipneumoniae infection during late spring's cold weather conditions. Autopsy findings showed severe pulmonary injury in affected sheep, and whole genome sequencing identified genetic elements associated with pathogenicity and virulence factors of M. ovipneumoniae.


Subject(s)
Goat Diseases , Mycoplasma ovipneumoniae , Pneumonia, Mycoplasma , Sheep Diseases , Animals , Sheep , Mycoplasma ovipneumoniae/genetics , Pneumonia, Mycoplasma/veterinary , Autopsy/veterinary , Goats , Virulence Factors , Whole Genome Sequencing/veterinary
17.
Int J Mol Sci ; 25(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38203732

ABSTRACT

Despite Bacillus species having been extensively utilized in the food industry and biocontrol as part of probiotic preparations, limited knowledge exists regarding their impact on intestinal disorders. In this study, we investigated the effect of Bacillus licheniformis ZW3 (ZW3), a potential probiotic isolated from camel feces, on dextran sulfate sodium (DSS)-induced colitis. The results showed ZW3 partially mitigated body weight loss, disease activity index (DAI), colon shortening, and suppressed immune response in colitis mice, as evidenced by the reduction in the levels of the inflammatory markers IL-1ß, TNF-α, and IL-6 (p < 0.05). ZW3 was found to ameliorate DSS-induced dysfunction of the colonic barrier by enhancing mucin 2 (MUC2), zonula occluden-1 (ZO-1), and occludin. Furthermore, enriched beneficial bacteria Lachnospiraceae_NK4A136_group and decreased harmful bacteria Escherichia-Shigella revealed that ZW3 improved the imbalanced gut microbiota. Abnormally elevated uric acid levels in colitis were further normalized upon ZW3 supplementation. Overall, this study emphasized the protective effects of ZW3 in colitis mice as well as some potential applications in the management of inflammation-related diseases.


Subject(s)
Bacillus licheniformis , Bacillus , Colitis , Probiotics , Animals , Mice , Colitis/chemically induced , Colitis/therapy , Camelus , Homeostasis , Probiotics/pharmacology , Probiotics/therapeutic use
18.
Environ Pollut ; 345: 123290, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38176641

ABSTRACT

Leaves can specifically uptake trace elements from the surrounding environment. And tree leaves are a good biological indicator for air pollution. Therefore, chemical analysis of leaf specifications can be used to reproduce a historical record of air pollution. To better understand the history of urban air pollution from the 1920s to the 2020s in Nanjing, China, leaf samples of two woody plants, Platanus × hispanica and Pittosporum tobira, were collected in this study as environmental indicators from different historical periods. These included historical herbarium specimens and current leaves from live trees. The concentrations of 10 trace elements were determined in the samples using ICP‒MS. Pollution indices were calculated, yielding the key findings. The historical leaf samples showed continuously increasing mean concentrations of the 10 trace elements over time, which significantly correlating with automobile quantities and the number of large-scale industrial enterprises (p < 0.05). Moreover, modern leaf trace element concentrations were significantly correlated with PM10, PM2.5, automobiles, large-scale industrial enterprises, and atmospheric factors, confirming these as sources. In addition to the historical growth trend, spatial heterogeneity was revealed in historical Platanus × hispanica leaf samples from the 14 sites in Nanjing. Changes in heavy metal trace element pollution distributions were consistent with transportation and industrial expansion, with homologous patterns across elements. Specifically, post 1980s increases were observed in the representative NJ2 (Zhongshan Botanical Garden) and the NJ5(Nanjing University) sites, with higher concentrations occurring at in the NJ5 contaminated site than at the NJ2 uncontaminated site. After 2009, the 10 element (except Cd) pollution indices in Platanus × hispanica leaves fluctuated but declined overall. This reconstruction of Nanjing's air pollution history demonstrates that ample environmental information can be extracted from plant leaf markers over time and space.


Subject(s)
Air Pollutants , Air Pollution , Metals, Heavy , Rosales , Trace Elements , Humans , Trace Elements/analysis , Environmental Monitoring , Air Pollution/analysis , Metals, Heavy/analysis , Trees , Plant Leaves/chemistry , Air Pollutants/analysis
19.
Int J Nanomedicine ; 19: 171-188, 2024.
Article in English | MEDLINE | ID: mdl-38204601

ABSTRACT

Background: The evident side effects and decreased drug sensitivity significantly restrict the use of chemotherapy. However, nanoparticles based on biomaterials are anticipated to address this challenge. Methods: Through bioinformatics analysis and colon cancer samples, we initially investigated the expression level of RNF8 in colon cancer. Next, we constructed nanocarrier for delivering siRNF8 based on DNA tetrahedron (si-Tet), and Doxorubicin (DOX) was further intercalated into the DNA structure (si-DOX-Tet) for combination therapy. Further, the effects and mechanism of RNF8 inhibition on the sensitivity of colon cancer cells to DOX chemotherapy have also been studied. Results: RNF8 expression was increased in colon cancer. Agarose gel electrophoresis, transmission electron microscopy, and size distribution and potential analysis confirmed the successful preparation of the two nanoparticles, with particle sizes of 10.29 and 37.29 nm, respectively. Fluorescence imaging reveals that the carriers can be internalized into colon cancer cells and escape from lysosomes after 12 hours of treatment, effectively delivering siRNF8 and DOX. Importantly, Western blot analysis verified treatment with 50nM si-Tet silenced RNF8 expression by approximately 50% in colon cancer cells, and combined treatment significantly inhibited cell proliferation. Furthermore, the CCK-8 assay demonstrated that si-Tet treatment enhanced the sensitivity of colon cancer cells to the three chemotherapeutic drugs. Significant more DNA damage was detected after treatment with both si-Tet or si-DOX-Tet. Further flow cytometry analysis revealed that si-DOX-Tet treatment led to significantly more apoptosis, approximately 1.6-fold higher than treatment with DOX alone. Mechanistically, inhibiting RNF8 led to decreased ABCG2 expression and DOX efflux, but increased DNA damage, thereby enhancing the chemotherapeutic effect of DOX. Conclusion: We have successfully constructed si-DOX-Tet. By inhibiting the expression of RNF8, it enhances the chemotherapy sensitivity of DOX. Therefore, this tetrahedral FNA nanocarrier offers a new approach for the combined treatment of colon cancer.


Subject(s)
Colonic Neoplasms , Nucleic Acids , Humans , DNA , Combined Modality Therapy , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Apoptosis , Doxorubicin/pharmacology
20.
J Immunol ; 212(1): 57-68, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38019127

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Tm) causes severe foodborne diseases. Interestingly, gut microbial tryptophan (Trp) metabolism plays a pivotal role in such infections by a yet unknown mechanism. This study aimed to explore the impact of Trp metabolism on S. Tm infection and the possible mechanisms involved. S. Tm-infected C57BL6/J mice were used to demonstrate the therapeutic benefits of the Bacillus velezensis JT3-1 (B. velezensis/JT3-1) strain or its cell-free supernatant in enhancing Trp metabolism. Targeted Trp metabolomic analyses indicated the predominance of indole-3-lactic acid (ILA), an indole derivative and ligand for aryl hydrocarbon receptor (AHR). Based on the 16S amplicon sequencing and correlation analysis of metabolites, we found that B. velezensis supported the relative abundance of Lactobacillus and Ligilactobacillus in mouse gut and showed positive correlations with ILA levels. Moreover, AHR and its downstream genes (especially IL-22) significantly increased in mouse colons after B. velezensis or cell-free supernatant treatment, suggesting the importance of AHR pathway activation. In addition, ILA was found to stimulate primary mouse macrophages to secrete IL-22, which was antagonized by CH-223191. Furthermore, ILA could protect mice from S. Tm infection by increasing IL-22 in Ahr+/- mice, but not in Ahr-/- mice. Finally, Trp-rich feeding showed amelioration of S. Tm infection in mice, and the effect depended on gut microbiota. Taken together, these results suggest that B. velezensis-associated ILA contributes to protecting mice against S. Tm infection by activating the AHR/IL-22 pathway. This study provides insights into the involvement of microbiota-derived Trp catabolites in protecting against Salmonella infection.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Salmonella Infections , Animals , Mice , Salmonella typhimurium , Tryptophan/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...