Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 267(Pt 1): 131385, 2024 May.
Article in English | MEDLINE | ID: mdl-38582477

ABSTRACT

In this study, we extracted the polysaccharides from C. militaris fruiting bodies (CFIPs), mycelial intracellular polysaccharides (CMIPs), and fermentation broth extracellular polysaccharides (CFEPs) to investigate their physicochemical properties, antioxidant capacities, and effects on oxazolone-induced zebrafish ulcerative colitis (UC). Our results revealed differences in monosaccharide composition and surface structure among CFIPs, CMIPs, and CFEPs. The molar ratios of glucose to mannose in CFIPs, glucose to xylose in CMIPs, and xylose to glucose in CFEPs were 7.57: 1.6, 7.26: 1.81, and 5.44: 2.98 respectively. Moreover, CFEPs exhibited significantly (p < 0.05) higher chemical antioxidant capacity compared to CMIPs and CFIPs. Surprisingly, CFEP treatment didn't show a significant effect in protecting against H2O2-induced oxidative damage in RAW 264.7 cells. After 3 d of treatment, the levels of ROS, MDA, and MPO in the CFIPs group exhibited a significant (p < 0.05) reduction by 37.82 %, 68.15 %, and 22.77 % respectively. Additionally, the ACP and AKP increased by 60.33 % and 96.99 %. Additionally, C. militaris polysaccharides (CMPs) were found to effectively improve UC by activating the MyD88/NF-κB signaling pathway in vivo. These findings confirm the distinct physicochemical properties of these three types of CMP and their potential for development into antioxidant-rich anti-inflammatory health foods.


Subject(s)
Antioxidants , Colitis, Ulcerative , Cordyceps , Zebrafish , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , RAW 264.7 Cells , Cordyceps/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Oxidative Stress/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Monosaccharides/analysis , Reactive Oxygen Species/metabolism , Hydrogen Peroxide
2.
Front Nutr ; 9: 980357, 2022.
Article in English | MEDLINE | ID: mdl-36118767

ABSTRACT

Dry fruiting bodies of Cordyceps militaris (CMF) have been widely used in folk tonic foods and traditional herbal medicine in East Asia. Drying treatment serves as the last step in CMF industrial processes. In this work, the physicochemical properties of polysaccharides from C. militaris fruiting bodies (CMFPs) with hot air drying (HD), far-infrared radiation drying (ID) and vacuum freeze-drying (FD) treatments were analyzed, and their effects on ulcerative colitis (UC) were further investigated in oxazolone-induced zebrafish. The results showed that physicochemical properties of CMFP-H, CMFP-I and CMFP-F were obvious different. CMFPs could repair the intestinal mucosal barrier, inhibit ROS generation and the activities of MDA and MPO, and improve the activities of SOD, CAT, ACP, AKP and LZM. Further detection indicated that CMFPs could better improve UC via activating the MyD88/NF-κB signaling pathway in vivo. However, CMFP-H, CMFP-F and CMFP-I exhibited diverse regulation effects on specific immune-related enzymes and cytokines. The data would be helpful for finding practical and rapid drying methods for macro-fungi and further exploring CMFPs as functional food ingredients or complementary medicines for the treatments of UC.

SELECTION OF CITATIONS
SEARCH DETAIL
...