Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Integr Plant Biol ; 66(7): 1334-1350, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38804844

ABSTRACT

Drought stress has negative effects on crop growth and production. Characterization of transcription factors that regulate the expression of drought-responsive genes is critical for understanding the transcriptional regulatory networks in response to drought, which facilitates the improvement of crop drought tolerance. Here, we identified an Alfin-like (AL) family gene ZmAL14 that negatively regulates drought resistance. Overexpression of ZmAL14 exhibits susceptibility to drought while mutation of ZmAL14 enhances drought resistance. An abscisic acid (ABA)-activated protein kinase ZmSnRK2.2 interacts and phosphorylates ZmAL14 at T38 residue. Knockout of ZmSnRK2.2 gene decreases drought resistance of maize. A dehydration-induced Rho-like small guanosine triphosphatase gene ZmROP8 is directly targeted and repressed by ZmAL14. Phosphorylation of ZmAL14 by ZmSnRK2.2 prevents its binding to the ZmROP8 promoter, thereby releasing the repression of ZmROP8 transcription. Overexpression of ZmROP8 stimulates peroxidase activity and reduces hydrogen peroxide accumulation after drought treatment. Collectively, our study indicates that ZmAL14 is a negative regulator of drought resistance, which can be phosphorylated by ZmSnRK2.2 through the ABA signaling pathway, thus preventing its suppression on ZmROP8 transcription during drought stress response.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Zea mays , Phosphorylation , Zea mays/genetics , Zea mays/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Abscisic Acid/metabolism , Stress, Physiological/genetics , Promoter Regions, Genetic/genetics , Drought Resistance
2.
Nat Commun ; 15(1): 1774, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413566

ABSTRACT

Mutations in a Plasmodium de-ubiquitinase UBP1 have been linked to antimalarial drug resistance. However, the UBP1-mediated drug-resistant mechanism remains unknown. Through drug selection, genetic mapping, allelic exchange, and functional characterization, here we show that simultaneous mutations of two amino acids (I1560N and P2874T) in the Plasmodium yoelii UBP1 can mediate high-level resistance to mefloquine, lumefantrine, and piperaquine. Mechanistically, the double mutations are shown to impair UBP1 cytoplasmic aggregation and de-ubiquitinating activity, leading to increased ubiquitination levels and altered protein localization, from the parasite digestive vacuole to the plasma membrane, of the P. yoelii multidrug resistance transporter 1 (MDR1). The MDR1 on the plasma membrane enhances the efflux of substrates/drugs out of the parasite cytoplasm to confer multidrug resistance, which can be reversed by inhibition of MDR1 transport. This study reveals a previously unknown drug-resistant mechanism mediated by UBP1 through altered MDR1 localization and substrate transport direction in a mouse model, providing a new malaria treatment strategy.


Subject(s)
Antimalarials , Endopeptidases , Malaria, Falciparum , Plasmodium yoelii , Animals , Mice , Plasmodium yoelii/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Antimalarials/therapeutic use , Drug Resistance, Multiple/genetics , Drug Resistance/genetics
3.
mBio ; : e0234623, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37874152

ABSTRACT

Cerebral malaria (CM) is a severe neurological complication of Plasmodium falciparum infection with acute brain lesions. Genetic variations in both host and parasite have been associated with susceptibility to CM, but the underlying molecular mechanism remains unclear. Here, we demonstrate that variants of human apolipoprotein E (hApoE) impact the outcome of Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM). Mice carrying the hApoE2 isoform have fewer intracerebral hemorrhages and are more resistant to ECM than mice bearing the hApoE3, hApoE4, or endogenous murine ApoE (mApoE). hApoE2 mice infected with PbA showed increased splenomegaly and IFN-γ levels in serum but reduced cerebral cell apoptosis that correlated with the survival advantage against ECM. In addition, upregulated expression of genes associated with lipid metabolism and downregulated expression of genes linked to immune responses were observed in the brain tissue of hApoE2 mice relative to ECM-susceptible mice after PbA infection. Notably, serum cholesterol and the cholesterol content of brain-infiltrating CD8+ T cells are significantly higher in infected hApoE2 mice, which might contribute to a significant reduction in the sequestration of brain CD8+ T cells. Consistent with the finding that fewer brain lesions occurred in infected hApoE2 mice, fewer behavioral deficits were observed in the hApoE2 mice. Finally, a meta-analysis of publicly available data also showed an increased hApoE2 allele in the malaria-endemic African population, suggesting malaria selection. This study shows that hApoE2 protects mice from ECM through suppression of CD8+ T cell activation and migration to the brain and enhanced cholesterol metabolism.IMPORTANCECerebral malaria (CM) is the deadliest complication of malaria infection with an estimated 15%-25% mortality. Even with timely and effective treatment with antimalarial drugs such as quinine and artemisinin derivatives, survivors of CM may suffer long-term cognitive and neurological impairment. Here, we show that human apolipoprotein E variant 2 (hApoE2) protects mice from experimental CM (ECM) via suppression of CD8+ T cell activation and infiltration to the brain, enhanced cholesterol metabolism, and increased IFN-γ production, leading to reduced endothelial cell apoptosis, BBB disruption, and ECM symptoms. Our results suggest that hApoE can be an important factor for risk assessment and treatment of CM in humans.

4.
New Phytol ; 237(5): 1728-1744, 2023 03.
Article in English | MEDLINE | ID: mdl-36444538

ABSTRACT

Drought is a major environmental stress that threatens crop production. Therefore, identification of genes involved in drought stress response is of vital importance to decipher the molecular mechanism of stress signal transduction and breed drought tolerance crops, especially for maize. Clade A PP2C phosphatases are core abscisic acid (ABA) signaling components, regulating ABA signal transduction and drought response. However, the roles of other clade PP2Cs in drought resistance remain largely unknown. Here, we discovered a clade F PP2C, ZmPP84, that negatively regulates drought tolerance by screening a transgenic overexpression maize library. Quantitative RT-PCR indicates that the transcription of ZmPP84 is suppressed by drought stress. We identified that ZmMEK1, a member of the MAPKK family, interacts with ZmPP84 by immunoprecipitation and mass spectrometry analysis. Additionally, we found that ZmPP84 can dephosphorylate ZmMEK1 and repress its kinase activity on the downstream substrate kinase ZmSIMK1, while ZmSIMK1 is able to phosphorylate S-type anion channel ZmSLAC1 at S146 and T520 in vitro. Mutations of S146 and T520 to phosphomimetic aspartate could activate ZmSLAC1 currents in Xenopus oocytes. Taken together, our study suggests that ZmPP84 is a negative regulator of drought stress response that inhibits stomatal closure through dephosphorylating ZmMEK1, thereby repressing ZmMEK1-ZmSIMK1 signaling pathway.


Subject(s)
Abscisic Acid , Zea mays , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Zea mays/genetics , Zea mays/metabolism , Drought Resistance , Plant Breeding , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Droughts , Gene Expression Regulation, Plant , Stress, Physiological/genetics
5.
iScience ; 25(5): 104313, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35602970

ABSTRACT

A genome-wide analysis in Schizosaccharomyces pombe indicated that double-deletion mutants of Chl1 and histone H3K9 methyltransferase complex factors are synthetically sick. Here, we show that loss of Chl1 increases the accumulation of RNA-DNA hybrids at pericentromeric dg and dh repeats in the absence of the H3K9 methyltransferase Clr4, which leads to genome instability, including more severe defects in chromosome segregation and increased chromatin accessibility. Localization of Chl1 at pericentromeric regions depends on a subunit of replication protein A (RPA), Ssb1. In wild-type (WT) cells, transcriptionally repressed heterochromatin prevents the formation of RNA-DNA hybrids. When Clr4 is deleted, dg and dh repeats are highly transcribed. Then Ssb1 associates with the displaced single-stranded DNA (ssDNA) and recruits Chl1 to resolve the RNA-DNA hybrids. Together, our data suggest that Chl1 coordinates with Clr4 to eliminate RNA-DNA hybrids, which contributes to the maintenance of genome integrity.

SELECTION OF CITATIONS
SEARCH DETAIL
...