Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(24): 12512-12525, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38833532

ABSTRACT

g-C3N4/Ag-ZnO (CAZ) composite photocatalysts were synthesized successfully by the hydrothermal method. The photocatalytic performance of photocatalysts was assessed through experiments measuring both hydrogen (H2) production and the degradation of methylene blue (MB). The H2 production rate of 60% CAZ reached 2.450 mmol·g-1·h-1, which was 8.5 times that of g-C3N4. 25% CAZ degraded 99.14% of MB dye within 40 min, and its degradation rate constant was 12.4 times that of g-C3N4. CAZ composite photocatalysts have good synergistic properties in degradation and hydrogen production and exhibit better photocatalytic performance. A Z-scheme photocatalytic system mechanism of CAZ has been proposed for the enhanced H2 production and photocatalytic degradation rate.

2.
Chemphyschem ; : e202400039, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526205

ABSTRACT

In response to the global demand for sustainable energy solutions, the quest for stable and cost-effective hydrogen production has garnered significant attention in recent decades. Here, the emergence of layered metal phosphorus trichalcogenides (MPX3, M: transition metal, X: chalcogen) materials and their two-dimensional counterparts with customizable composition and electronic structure holds great promise for such purposes. In the present study, we successfully synthesized large-scale and high-quality FePS3, NiPS3, and an alloyed counterpart, Fe0.5Ni0.5PS3. Subsequent systematic investigations were conducted to probe their respective electronic structures and assess their hydrogen evolution reaction (HER) properties. Remarkably, our results unveiled the successful modulation of the bandgap for FexNiyPS3, ultimately bestowing it with the most favorable HER performance for Fe0.5Ni0.5PS3 when compared to the other two samples. Furthermore, our exploration into the evolution of the X-ray photoelectron spectroscopy (XPS) spectra demonstrated that the charge conversions of metal cations play a pivotal role in the HER reactions. This critical insight further enriches our understanding of the fundamental mechanisms governing the performance of the prepared layered MPX3-based electrocatalysts, thus facilitating a comprehensive and detailed analysis of the pre- and post-HER reactions. This work not only sheds light on the intricate interplay between composition, electronic structure, and catalytic performance in the realm of novel electrocatalysts, but also contributes to the broader scientific community's pursuit of sustainable and efficient hydrogen production.

3.
J Phys Chem Lett ; 14(1): 57-65, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36566431

ABSTRACT

The electronic structure of the alloyed transition-metal phosphorus trichalcogenide van der Waals Fe1-xNixPS3 compounds is studied using X-ray absorption spectroscopy and resonant photoelectron spectroscopy combined with intensive density functional theory calculations. Our systematic spectroscopic and theoretical data demonstrate the strong localization of the Fe- and Ni-ions-derived electronic states that leads to the description of the spectroscopic data as belonging simultaneously to Mott-Hubbard and charge-transfer insulators. These findings reveal Fe1-xNixPS3 as unique layered compounds with dual character of the insulating state, pointing to the importance of these results for the description and understanding of the functionality of this class of materials in different applications.

4.
J Phys Chem Lett ; 13(45): 10486-10493, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36326647

ABSTRACT

Large-scale high-quality van der Waals CoPS3 single crystals are synthesized using a chemical vapor transport (CVT) method. The crystallographic structure and electronic properties of this layered material are systematically studied using different spectroscopic methods (XPS, NEXAFS, and resonant photoelectron spectroscopy) accompanied by density functional theory (DFT) calculations. All experimental and theoretical data allow assignment of this material to the class of mixed Mott-Hubbard/charge-transfer insulator with Udd ≅ Δ. All obtained results can enrich the information on the new class of van der Waals materials, transition metal phosphorus trichalcogenides, and help to further effectively exploit their electronic, optical, and transport properties, which are important for adopting this kind of materials into different application areas, such as spintronics and catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...