Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(7): 1999-2005, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38349331

ABSTRACT

Recent advancements in preparing few-layer black phosphorene (BP) are hindered by edge reconstruction challenges. Our previous studies have revealed the factors contributing to the difficulty of growing few-layer BP. In this study, we have successfully identified three reconstructed edges in bi- and multilayer BP through a combination of the crystal structure analysis by particle swarm optimization (CALYPSO) global structure search and density functional theory (DFT). Notably, the reconstruction between adjacent layers proves more beneficial than self-passivation or maintaining pristine edges. Among the reconstructed edges, the reconstructed ZZ edge is the most stable, regardless of the number of layers. Calculated electronic band structures reveal a significant transition in the electronic properties of black phosphorus nanoribbons (BPNRs), changing from metallic to semiconducting. This insight not only enhances the understanding of the fundamental properties of BP but also provides valuable theoretical guidance for the experimental growth of BPNRs or black phosphorus nanowires (BPNWs).

2.
Crit Rev Oncol Hematol ; 194: 104248, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145832

ABSTRACT

Bone marrow metastasis (BMM) of solid tumors refers to a group of diseases that originate from non-hematopoietic malignant tumor cells invading the bone marrow (BM) through complex metastatic patterns. If BMM identification is delayed, the disease will rapidly develop into disseminated carcinogenesis of the BM, which manifests as a series of hematological disorders and microangiopathic hemolytic anemia, leading to serious life-threatening conditions. Although the study of solid tumor BMM is receiving increasing attention, study remains limited, and most descriptions are derived from case reports. Currently, clinicians have insufficient understanding of BMM, and BMM occurrence is often not recognized early or treated effectively, resulting in high mortality rates. In this article, we review the epidemiology, molecular mechanisms, clinical diagnosis, treatment, and prognosis of solid tumor BMM.


Subject(s)
Bone Marrow Neoplasms , Bone Neoplasms , Humans , Bone Marrow/pathology , Prognosis , Bone Marrow Neoplasms/diagnosis , Bone Marrow Neoplasms/therapy , Bone Neoplasms/pathology
3.
Medicine (Baltimore) ; 101(50): e32355, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36550889

ABSTRACT

Stroke patients with autonomic dysfunction are more likely to develop cardiac problems, which have been linked to lower functional outcomes and increased mortality. In this study, heart rate variability (HRV) detection paired with the Clinical Feature Scale will be utilized to elucidate the immediate impact of manual acupuncture on autonomic dysfunction of varying severity in the convalescence stroke phase. This is a randomized, single-blind, controlled clinical trial approach. At a ratio of 1:1, 60 appropriate patients will be randomly randomized into either the experimental or control group. On the basis of symptomatic treatment drugs, the experimental group will additionally undertake acupuncture therapy 3 times a week for 4 weeks, for a total of 12 times. Primary outcomes include 24-hour HRV and 60-minute HRV detection at week 4 compared with baseline. The secondary outcome is the score of clinical feature scale at week 4 compared with the baseline. Adverse events and safety indices will be recorded throughout the experiment. The SPSS V.25.0 statistical program was applied for analysis, and measurement data were expressed as mean ±â€…SD.


Subject(s)
Primary Dysautonomias , Stroke , Humans , Heart Rate/physiology , Single-Blind Method , Stroke/complications , Stroke/therapy , Stroke/diagnosis , Autonomic Pathways
4.
Nanoscale ; 14(41): 15468-15474, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36226513

ABSTRACT

The edge structure of two-dimensional (2D) materials plays a critical role in controlling their growth kinetics and morphological evolution, electronic structures and functionalities. However, until now, the accurate edge reconstruction of ZnO nanoribbons remains absent. Here, we present results of a global search of ZnO edge structures having used the CALYPSO program combined with the density functional theory (DFT) method. In addition to a database of all the possible edge reconstructed structures of ZnO nanoribbons, the most stable edge reconstructed structures of armchair (ZnOAC), O-enriched zigzag (OZZ) and Zn-enriched zigzag edges (ZnZZ) have been confirmed based on molecular dynamics (MD) simulation and bonding configuration analysis of atoms near the edges. The edge formation energies show that their stabilities depend on the chemical potential (µO) and the concentrations (ρO) of oxygen atoms. Interestingly, a highly stable ZnZZ edge exhibits a novel nanotube-like structure and metallic characteristics, while the most stable reconstructed OZZ edge, resembling the letter "T", exhibits a narrow direct band-gap. It is almost certain that their electronic properties are determined by the edge states.

5.
Inorg Chem ; 61(39): 15569-15575, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36122371

ABSTRACT

MgH2 is well known as a potential hydrogen storage material. However, its high thermodynamic stability, high dissociation temperature, slow absorption, and desorption kinetics severely limit its application. Aiming at these shortcomings, we try to improve the hydrogen storage property of MgH2 by doping with transition metal Sc atoms. The structures and electronic and hydrogen storage properties of Mg-Sc-H systems have been systematically studied by combining the crystal structure analysis by particle swarm optimization and density functional theory method. The results show that the structure of MgScH8 with the R3 space group is the most stable one, which is proved to be a wide-band gap (2.96 eV) semiconductor. The possible decomposition pathways, which are crucial for the applicability of R3-MgScH8 as a hydrogen storage material, are studied, and the pathway of MgScH8 → ScH6 + Mg + H2 is found to be the most favorable one under 107.8 GPa pressure, while above 107.8 GPa, MgScH8 → Mg + Sc + 4H2 becomes the most thermodynamically stable pathway and releases the maximum amount of hydrogen. Based on the root mean square deviation calculation, it is found that R3-MgScH8 begins to melt at 400 K. The result of ab initio molecular dynamics simulations shows that the hydrogen release capacity (4.04 wt %) can be easily achieved at 500 K, thus making MgScH8 a potential hydrogen storage material.

SELECTION OF CITATIONS
SEARCH DETAIL
...