Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2401359, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38663867

ABSTRACT

With the continuous upsurge in demand for wearable energy, nanogenerators are increasingly required to operate under extreme environmental conditions. Even though they are at the cutting edge of technology, nanogenerators have difficulty producing high-quality electrical output at very extreme temperatures. Here, a triboelectric basalt textile (TBT) with an ultrawide operational temperature range (from -196 to 520 °C) is created employing basalt material as the main body. The output power density of the TBT, in contrast to most conventional nanogenerators, would counterintuitively rise by 2.3 times to 740.6 mW m-2 after heating to 100 °C because the high temperature will enhance the material's interface polarization and electronic kinetic energy. The TBT retains ≈55% of its initial electrical output even after heating in the flame of an alcohol lamp (520 °C). Surprisingly, the TBTs output voltage may retain over 85% of its initial value even after submerging in liquid nitrogen. The TBTs exceptional resistance to heat and cold indicates its possible use in high and low latitudes, high altitudes, deserts, and even space settings.

2.
ACS Nano ; 16(8): 12635-12644, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35930746

ABSTRACT

Electronic textiles, inherited with the wearability of conventional clothes, are deemed fundamental for emerging wearable electronics, particularly in the Internet of Things era. However, the electronic waste produced by electronic textiles will further exacerbate the severe pollution in traditional textiles. Here, we develop a large-scale green electronic textile using renewable bio-based polylactic acid and sustainable eutectic gallium-indium alloys. The green electronic textile is extremely abrasion resistant and can degrade naturally in the environment even if abrasion produces infinitesimal amounts of microplastics. The mass loss and performance change rates of the reconstituted green electronic textiles are all below 5.4% after going through the full-cycle recycling procedure. This green electronic textile delivers high physiological comfort (including electronic comfort and thermal-moisture comfort), enables wireless power supply (without constraints by, e.g., wires and ports), has 2 orders of magnitude better air and moisture permeability than the body requires, and can lower skin temperature by 5.2 °C.


Subject(s)
Plastics , Textiles , Electronics
3.
ACS Appl Mater Interfaces ; 13(46): 55481-55488, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34767341

ABSTRACT

Integrating multiple mechanical sensing capabilities in one device is highly desired to mimic the amazing functions of human skin, and it demonstrates promising applications in the human-machine interface and wearable robotic exoskeletons. Yet, challenges remain in how to couple the multisensations using as few modules as possible to increase the compactness and conformality of the electronics. Herein, we report a self-powered multiple mechanical sensing electronic device capable of sensing multiple motion modes of strain ratios, strain direction, and pressure. The self-powered property derives from the triboelectric working mechanism of the sensor. The multiple mechanical sensing is realized by utilizing an anisotropic crumpled nanofibrous membrane as the triboelectric layer and ionic conductor as the electrode layer. For strain ratios and pressure sensing, the output voltages of the sensor changed with the changes of these external stimulus with a comparable sensitivity. More importantly, contributed by the anisotropic structure of the designed crumples, the directional strain sensing is realized by the anisotropic sensitivity in three stretched directions.

4.
Nat Commun ; 10(1): 5541, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31804506

ABSTRACT

Developing fabric-based electronics with good wearability is undoubtedly an urgent demand for wearable technologies. Although the state-of-the-art fabric-based wearable devices have shown unique advantages in the field of e-textiles, further efforts should be made before achieving "electronic clothing" due to the hard challenge of optimally unifying both promising electrical performance and comfortability in single device. Here, we report an all-fiber tribo-ferroelectric synergistic e-textile with outstanding thermal-moisture comfortability. Owing to a tribo-ferroelectric synergistic effect introduced by ferroelectric polymer nanofibers, the maximum peak power density of the e-textile reaches 5.2 W m-2 under low frequency motion, which is 7 times that of the state-of-the-art breathable triboelectric textiles. Electronic nanofiber materials form hierarchical networks in the e-textile hence lead to moisture wicking, which contributes to outstanding thermal-moisture comfortability of the e-textile. The all-fiber electronics is reliable in complicated real-life situation. Therefore, it is an idea prototypical example for electronic clothing.

5.
Nat Commun ; 10(1): 868, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30787290

ABSTRACT

Biomechanical energy harvesting textiles based on nanogenerators that convert mechanical energy into electricity have broad application prospects in next-generation wearable electronic devices. However, the difficult-to-weave structure, limited flexibility and stretchability, small device size and poor weatherability of conventional nanogenerator-based devices have largely hindered their real-world application. Here, we report a highly stretchable triboelectric yarn that involves unique structure design based on intrinsically elastic silicone rubber tubes and extrinsically elastic built-in stainless steel yarns. By using a modified melt-spinning method, we realize scalable-manufacture of the self-powered yarn. A hundred-meter-length triboelectric yarn is demonstrated, but not limited to this size. The triboelectric yarn shows a large working strain (200%) and promising output. Moreover, it has superior performance in liquid, therefore showing all-weather durability. We also show that the development of this energy yarn facilitates the manufacturing of large-area self-powered textiles and provide an attractive direction for the study of amphibious wearable technologies.

6.
ACS Appl Mater Interfaces ; 8(7): 4676-83, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26809194

ABSTRACT

The rapid development of wearable electronics in recent years has brought increasing energy consumption, making it an urgent need to focus on personal energy harvesting, storage and management. Herein, a textile-based personal energy management device with multilayer-coating structure was fabricated by encapsulating commercial nylon cloth coated with silver nanowires into polydimethylsiloxane using continuous and facile dip-coating method. This multilayer-coating structure can not only harvest mechanical energy from human body motion to power wearable electronics but also save energy by keeping people warm without losing heat to surroundings and wasting energy to heat empty space and inanimate objects. Fluoroalkylsilanes (FAS) were grafted onto the surface of the film through one single dip-coating process to improve its energy harvesting performance, which has hardly adverse effect to heat insulation and Joule heating property. In the presence of FAS modification, the prepared film harvested mechanical energy to reach a maximum output power density of 2.8 W/m(2), charged commercial capacitors and lighted LEDs, showing its potential in powering wearable electronics. Furthermore, the film provided 8% more thermal insulation than normal cloth at 37 °C and efficiently heated to 40 °C within 4 min when applied the voltage of only 1.5 V due to Joule heating effect. The high flexibility and stability of the film ensures its wide and promising application in the wearable field.


Subject(s)
Electric Power Supplies , Nanowires/chemistry , Silanes/chemistry , Textiles , Electronics , Humans , Nylons/chemistry , Silanes/chemical synthesis , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...