Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Hortic Res ; 11(5): uhae083, 2024 May.
Article in English | MEDLINE | ID: mdl-38766531

ABSTRACT

Wounding stress induces the biosynthesis of various secondary metabolites in plants, including anthocyanin. However, the underlying molecular mechanism remains elusive. Here, we reported that a transcription factor, VvWRKY5, promotes wounding-induced anthocyanin accumulation in grape (Vitis vinifera). Biochemical and molecular analyses demonstrated that wounding stress significantly increased anthocyanin content, and VvMYBA1 plays an essential role in this process. VvWRKY5 could interact with VvMYBA1 and amplify the activation effect of VvMYBA1 on its target gene VvUFGT. The transcript level of VvWRKY5 was notably induced by wounding treatment. Moreover, our data demonstrated that VvWRKY5 could promote the synthesis of jasmonic acid (JA), a phytohormone that acts as a positive modulator in anthocyanin accumulation, by directly binding to the W-box element in the promoter of the JA biosynthesis-related gene VvLOX and enhancing its activities, and this activation was greatly enhanced by the VvWRKY5-VvMYBA1 protein complex. Collectively, our findings show that VvWRKY5 plays crucial roles in wounding-induced anthocyanin synthesis in grape and elucidates the transcriptional regulatory mechanism of wounding-induced anthocyanin accumulation.

2.
Hortic Res ; 10(12): uhad226, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38077492

ABSTRACT

Berry texture is a noteworthy economic trait for grape; however, the genetic bases and the complex gene expression and regulatory mechanism for the diverse changes in berry texture are still poorly understood. In this study, the results suggest that it is difficult to obtain high-mesocarp firmness (MesF) and high-pericarp puncture hardness (PPH) grape cultivars with high pericarp brittleness (PerB). The high-density linkage map was constructed using whole-genome resequencing based on 151 F1 individuals originating from intraspecific hybridization between the firm-flesh cultivar 'Red Globe' and soft-flesh cultivar 'Muscat Hamburg'. The total length of the consensus map was 1613.17 cM, with a mean genetic distance between adjacent bin markers of 0.59 cM. Twenty-seven quantitative trait loci (QTLs) for berry MesF, PPH, and PerB were identified in linkage groups (LGs) 1, 3, 4, 6, 8, 9, 10, 11, 14, 16, and 17, including twelve QTLs that were firstly detected in LGs 6, 11, and 14. Fourteen promising candidate genes were identified from the stable QTL regions in LGs 10, 11, 14, and 17. In particular, VvWARK2 and VvWARK8 refer to chromosome 17 and are two promising candidate genes for MesF and PPH, as the VvWARK8 gene may increase pectin residue binding with WARK for high berry firmness maintenance and the allele for VvWARK2 carrying the 'CC' and 'GA' genotypes at Chr17:1836764 and Chr17:1836770 may be associated with non-hard texture grape cultivars. In addition, real-time quantitative polymerase chain reaction (RT-qPCR) verification revealed that the promising candidate transcription factor genes VvMYB4-like, VvERF113, VvWRKY31, VvWRKY1, and VvNAC83 may regulate cell wall metabolism candidate gene expression for grape berry texture changes.

3.
Hortic Res ; 10(10): uhad172, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37841502

ABSTRACT

Grape white rot is a disease caused by Coniella diplodiella (Speg.) Sacc. (Cd) can drastically reduce the production and quality of grape (Vitis vinifera). WRKY transcription factors play a vital role in the regulation of plant resistance to pathogens, but their functions in grape white rot need to be further explored. Here, we found that the expression of the WRKY IIe subfamily member VvWRKY5 was highly induced by Cd infection and jasmonic acid (JA) treatment. Transient injection and stable overexpression (in grape calli and Arabidopsis) demonstrated that VvWRKY5 positively regulated grape resistance to white rot. We also determined that VvWRKY5 regulated the JA response by directly binding to the promoters of VvJAZ2 (a JA signaling suppressor) and VvMYC2 (a JA signaling activator), thereby inhibiting and activating the transcription of VvJAZ2 and VvMYC2, respectively. Furthermore, the interaction between VvJAZ2 and VvWRKY5 enhanced the suppression and promotion of VvJAZ2 and VvMYC2 activities by VvWRKY5, respectively. When VvWRKY5 was overexpressed in grape, JA content was also increased. Overall, our results suggested that VvWRKY5 played a key role in regulating JA biosynthesis and signal transduction as well as enhancing white rot resistance in grape. Our results also provide theoretical guidance for the development of elite grape cultivars with enhanced pathogen resistance.

4.
Front Plant Sci ; 14: 1127206, 2023.
Article in English | MEDLINE | ID: mdl-36824203

ABSTRACT

Grape gray mold disease (Botrytis cinerea) is widespread during grape production especially in Vitis vinifera and causes enormous losses to the grape industry. In nature, the grapevine cultivar 'Beta ' (Vitis riparia × Vitis labrusca) showed high resistance to grape gray mold. Until now, the candidate genes and their mechanism of gray mold resistance were poorly understood. In this study, we firstly conducted quantitative trait locus (QTL) mapping for grape gray mold resistance based on two hybrid offspring populations that showed wide separation in gray mold resistance. Notably, two stable QTL related to gray mold resistance were detected and located on linkage groups LG2 and LG7. The phenotypic variance ranged from 6.86% to 13.70% on LG2 and 4.40% to 11.40% on LG7. Combined with RNA sequencing (RNA-seq), one structural gene VlEDR2 (Vitvi02g00982) and three transcription factors VlERF039 (Vitvi00g00859), VlNAC047 (Vitvi08g01843), and VlWRKY51 (Vitvi07g01847) that may be involved in VlEDR2 expression and grape gray mold resistance were selected. This discovery of candidate gray mold resistance genes will provide an important theoretical reference for grape gray mold resistance mechanisms, research, and gray mold-resistant grape cultivar breeding in the future.

5.
BMC Genomics ; 23(1): 551, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35918639

ABSTRACT

BACKGROUND: In cold regions, low temperature is the main limiting factor affecting grape production. As an important breeding resource, V. amurensis Rupr. has played a crucial role in the discovery of genes which confer cold resistance in grapes. Thus far, many cold-resistance genes have been reported based on the study of V. amurensis. In order to identify more candidate genes related to cold resistance in V. amurensis, QTL mapping and RNA-seq was conducted based on the hybrid population and different cold-resistance cultivars in this study. RESULTS: In this study, highly cold-resistant grape cultivar 'Shuangyou' (SY) which belongs to V. amurensis, and cold-sensitive cultivar 'Red Globe' (RG) which belongs to Vitis vinifera L. were used to identify cold resistance genes. Cold-resistance quantitative trait locus (QTL) mapping was performed based on genetic population construction through interspecific crossing of 'Shuangyou' and 'Red Globe'. Additionally, transcriptome analysis was conducted for the dormant buds of these two cultivars at different periods. Based on transcriptome analysis and QTL mapping, many new structural genes and transcription factors which relate to V. amurensis cold resistance were discovered, including CORs (VaCOR413IM), GSTs (VaGST-APIC, VaGST-PARB, VaGSTF9 and VaGSTF13), ARFs (VaIAA27 and VaSAUR71), ERFs (VaAIL1), MYBs (VaMYBR2, VaMYBLL and VaMYB3R-1) and bHLHs (VaICE1 and VabHLH30). CONCLUSIONS: This discovery of candidate cold-resistance genes will provide an important theoretical reference for grape cold-resistance mechanisms, research, and cold-resistant grape cultivar breeding in the future.


Subject(s)
Vitis , Chromosome Mapping , Plant Breeding , Quantitative Trait Loci , RNA-Seq , Vitis/genetics
6.
Appl Microbiol Biotechnol ; 105(18): 7035-7050, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34477939

ABSTRACT

Soil microorganisms are essential for the long-term sustainability of agricultural ecosystems. However, continuous grapevine replanting can disrupt the stability of soil microbial communities. We investigated the bacterial and fungal abundance, diversity, and community composition in rhizosphere soils with continuous grapevine replanting for 5, 6, 7 (Y5, Y6, and Y7; short-term), and 20 (Y20; long-term) years with high-throughput sequencing. Results showed that diversities and abundances of bacterial and fungal communities in Y20 were significantly lower than in other samples. The bacterial and fungal community compositions were markedly affected by the replanting time and planting year. After short-term grapevine replanting, relative abundances of potential beneficial bacteria and harmful fungi in rhizosphere soils were higher compared to long-term planting. Bacterial and fungal communities were significantly correlated with available nitrogen (AN), available phosphorus, available potassium (AK), and pH. AK and AN were the primary soil factors related to the shift of bacterial and fungal communities. Bacterial and fungal co-occurrence patterns were remarkably affected by replanting time, showing that fallow land harbored co-occurrence networks more complex than those in other groups, with the Y20 group showing the lowest complexity. Then, we isolated the dominant fungi in grapevine rhizosphere soil after continuous replanting and verified the harmful effects of three candidate strains through pot experiments. The results showed that 12 days post-treating the soil with fungal spore suspensions significantly inhibited grapevine seedlings' growth, whereas Fusarium solani inhibited plant growth. Overall, we showed that F. solani might be a potentially harmful fungus related to grapevine replant diseases. KEY POINTS: • Continuous grapevine planting reduced soil microbe diversities/abundances. • Beneficial bacteria and harmful fungi increased after short-term replanting. • F. solani may be a harmful fungus related to grapevine replant diseases.


Subject(s)
Microbiota , Mycobiome , Bacteria/genetics , Fungi , Fusarium , Rhizosphere , Soil , Soil Microbiology
7.
Phytopathology ; 111(4): 659-670, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33635092

ABSTRACT

Grape white rot (Coniothyrium diplodiella) is a major fungal disease affecting grape yield and quality. Quantitative trait locus (QTL) analysis is an important method for studying important horticultural traits of grapevine. This study was conducted to construct a high-density map and conduct QTL mapping for grapevine white rot resistance. A mapping population with 177 genotypes was developed from interspecific hybridization of a white rot-resistant cultivar (Vitis vinifera × V. labrusca 'Zhuosexiang') and white rot-susceptible cultivar (V. vinifera 'Victoria'). Single-nucleotide polymorphism (SNP) markers were developed by restriction site-associated DNA sequencing. The female, male, and integrated maps contained 2,501, 4,110, and 6,249 SNP markers with average genetic distances of adjacent markers of 1.25, 0.77, and 0.50 cM, respectively. QTL mapping was conducted based on white rot resistance identification of 177 individuals in July and August of 2017 and 2018. Notably, one stable QTL related to white rot resistance was detected and located on linkage group LG14. The phenotypic variance ranged from 12.93 to 13.43%. An SNP marker (chr14_3929380), which cosegregated with white rot resistance, was discovered and shows potential for use in marker-assisted selection to generate new grapevine cultivars with resistance to white rot.


Subject(s)
Quantitative Trait Loci , Vitis , Ascomycota , Female , Genetic Linkage , Male , Phenotype , Plant Diseases/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Sequence Analysis, DNA , Vitis/genetics
8.
Front Genet ; 12: 727260, 2021.
Article in English | MEDLINE | ID: mdl-35003203

ABSTRACT

In the past decade, progress has been made in sex determination mechanism in Vitis. However, genes responsible for sexual differentiation and its mechanism in V. amurensis remain unknown. Here, we identify a sex determination candidate gene coding adenine phosphoribosyl transferase 3 (VaAPRT3) in V. amurensis. Cloning and sequencing of the VaAPRT3 gene allowed us to develop a molecular marker able to discriminate female individuals from males or hermaphrodites based on a 22-bp InDel. Gene expression and endogenous cytokinin content analysis revealed that the VaAPRT3 gene is involved in sex determination or, to be precise, in female organ differentiation, through regulating cytokinin metabolism in V. amurensis. This study enlarged the understanding of sex determination mechanism in the genus Vitis, and the sex marker could be used as a helpful tool for sexual identification in breeding programs as well as in investigation and collection of V. amurensis germplasms.

9.
PLoS One ; 15(8): e0237526, 2020.
Article in English | MEDLINE | ID: mdl-32804968

ABSTRACT

Berry firmness is one of the main selection criteria for table grape breeding. However, the underlying genetic determinants and mechanisms involved in gene expression during berry development are still poorly understood. In this study, eighteen libraries sampled from Vitis vinifera L. cv. 'Red Globe' and 'Muscat Hamburg' at three developmental stages (preveraison, veraison and maturation) were analyzed by RNA sequencing (RNA-Seq). The firmness of 'Red Globe' was significantly higher than that of 'Muscat Hamburg' at the three developmental stages. In total, a set of 4,559 differentially expressed genes (DEGs) was identified between 'Red Globe' and 'Muscat Hamburg' in the preveraison (2,259), veraison (2030) and maturation stages (2682), including 302 transcription factors (TFs). Weighted gene coexpression network analysis (WGCNA) showed that 23 TFs were predicted to be highly correlated with fruit firmness and propectin content. In addition, the differential expression of the PE, PL, PG, ß-GAL, GATL, WAK, XTH and EXP genes might be the reason for the differences in firmness between 'Red Globe' and 'Muscat Hamburg'. The results will provide new information for analysis of grape berry firmness and softening.


Subject(s)
Gene Expression Profiling/methods , Gene Regulatory Networks , Vitis/growth & development , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , Plant Proteins/genetics , Quantitative Trait Loci , Sequence Analysis, RNA , Vitis/genetics
10.
BMC Genomics ; 21(1): 419, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32571215

ABSTRACT

BACKGROUND: Cold hardiness is an important agronomic trait and can significantly affect grape production and quality. Until now, there are no reports focusing on cold hardiness quantitative trait loci (QTL) mapping. In this study, grapevine interspecific hybridisation was carried out with the maternal parent 'Cabernet sauvignon' and paternal parent 'Zuoyouhong'. A total of 181 hybrid offspring and their parents were used as samples for restriction-site associated DNA sequencing (RAD). Grapevine cane phloem and xylem cold hardiness of the experimental material was detected using the low-temperature exotherm method in 2016, 2017 and 2018. QTL mapping was then conducted based on the integrated map. RESULTS: We constructed a high-density genetic linkage map with 16,076, 11,643, and 25,917 single-nucleotide polymorphism (SNP) markers anchored in the maternal, paternal, and integrated maps, respectively. The average genetic distances of adjacent markers in the maps were 0.65 cM, 0.77 cM, and 0.41 cM, respectively. Colinearity analysis was conducted by comparison with the grape reference genome and showed good performance. Six QTLs were identified based on the phenotypic data of 3 years and they were mapped on linkage group (LG) 2, LG3, and LG15. Based on QTL results, candidate genes which may be involved in grapevine cold hardiness were selected. CONCLUSIONS: High-density linkage maps can facilitate grapevine fine QTL mapping, genome comparison, and sequence assembly. The cold hardiness QTL mapping and candidate gene discovery performed in this study provide an important reference for molecular-assisted selection in grapevine cold hardiness breeding.


Subject(s)
Chromosome Mapping/methods , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Vitis/genetics , Genetic Linkage , Hardness , Phenotype , Phloem/physiology , Plant Breeding , Restriction Mapping , Sequence Analysis, DNA , Xylem/physiology
11.
PLoS One ; 15(2): e0229020, 2020.
Article in English | MEDLINE | ID: mdl-32045463

ABSTRACT

Few reports exist on QTL mapping of the important economic traits of hawthorn. We hybridized the cultivars 'Shandongdamianqiu' (female parent) and 'Xinbinruanzi' (male parent), and 130 F1 individuals and the two parents were used for RAD-seq, SNP development, and high-density linkage map construction. Three genetic maps were obtained, one for each of the parents and an integrated one. In these three maps, 17 linkage groups were constructed. The female and male parent maps contained 2657 and 4088 SNP markers, respectively, and had genetic distances of 2689.65 and 2558.41 cM, respectively, whereas the integrated map was 2470.02 cM, and contained 6,384 SNP markers. QTL mapping based on six agronomic traits, namely fruit transverse diameter, vertical diameter, single fruit weight, pericarp brittleness, pericarp puncture hardness, and average sarcocarp firmness were conducted, and 25 QTLs were detected in seven linkage groups. Explained phenotypic variation rate ranged from 17.7% to 35%. This genetic map contains the largest number of molecular markers ever obtained from hawthorn and will provide an important future reference for fine QTL mapping of economic traits and molecular assisted selection of hawthorn.


Subject(s)
Chromosome Mapping , Crataegus/genetics , Fruit/genetics , Genetic Linkage , Polymorphism, Single Nucleotide , Quantitative Trait Loci
12.
BMC Plant Biol ; 19(1): 501, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31729958

ABSTRACT

BACKGROUND: White rot is one of the most dangerous fungal diseases and can considerably affect grape berry production and quality. However, few studies have focused on this disease, and thus, finding candidate white rot resistance genes is of great importance for breeding resistant grapevine cultivars. Based on field observations and indoor experiments, the cultivars "Victoria" and "Zhuosexiang" showed significant differences in white rot resistance. For understanding the molecular mechanisms behind it, different phenotypes of grapevine leaves were used for RNA sequencing via Illumina and single-molecule real-time (SMRT) sequencing technology. RESULTS: A transcript library containing 53,906 reads, including known and novel transcripts, was constructed following the full-length transcriptome sequencing of the two grapevine cultivars. Genes involved in salicylic acid (SA) and jasmonic acid (JA) synthesis pathways showed different expression levels. Furthermore, four key transcription factors (TFs), NPR1, TGA4, Pti6, and MYC2, all involved in the SA and JA signal pathways were identified, and the expression profile revealed the different regulation of the pathogenesis related protein1 (PR1) resistance gene, as mediated by the four TFs. CONCLUSIONS: Full-length transcript sequencing can substantially improve the accuracy and integrity of gene prediction and gene function research in grapevine. Our results contribute to identify candidate resistance genes and improve our understanding of the genes and regulatory mechanisms involved in grapevine resistance to white rot.


Subject(s)
Cyclopentanes/metabolism , Disease Resistance/genetics , Oxylipins/metabolism , Plant Diseases/immunology , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Salicylic Acid/metabolism , Vitis/genetics , Fruit/genetics , Fruit/immunology , Fruit/microbiology , High-Throughput Nucleotide Sequencing , Plant Breeding , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Proteins/metabolism , Sequence Analysis, RNA , Transcription Factors/genetics , Transcription Factors/metabolism , Vitis/immunology , Vitis/microbiology
13.
BMC Plant Biol ; 18(1): 347, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30541441

ABSTRACT

BACKGROUND: High-saturate molecular linkage maps are an important tool in studies on plant molecular biology and assisted breeding. Development of a large set of single nucleotide polymorphisms (SNPs) via next-generation sequencing (NGS)-based methods, restriction-site associated DNA sequencing (RAD-seq), and the generation of a highly saturated genetic map help improve fine mapping of quantitative trait loci (QTL). RESULTS: We generated a highly saturated genetic map to identify significant traits in two elite grape cultivars and 176 F1 plants. In total, 1,426,967 high-quality restriction site-associated DNA tags were detected; 51,365, 23,683, and 70,061 markers were assessed in 19 linkage groups (LGs) for the maternal, paternal, and integrated maps, respectively. Our map was highly saturated in terms of marker density and average "Gap ≤ 5 cM" percentage. CONCLUSIONS: In this study, RAD-seq of 176 F1 plants and their parents yielded 8,481,484 SNPs and 1,646,131 InDel markers, of which 65,229 and 4832, respectively, were used to construct a highly saturated genetic map for grapevine. This map is expected to facilitate genetic studies on grapevine, including an evaluation of grapevine and deciphering the genetic basis of economically and agronomically important traits. Our findings provide basic essential genetic data the grapevine genetic research community, which will lead to improvements in grapevine breeding.


Subject(s)
Chromosome Mapping , Genes, Plant/genetics , Restriction Mapping/methods , Vitis/genetics , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Genetic Markers/genetics , High-Throughput Nucleotide Sequencing/methods , Metagenomics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable
14.
PLoS One ; 12(7): e0181728, 2017.
Article in English | MEDLINE | ID: mdl-28746364

ABSTRACT

Genetic maps are important tools in plant genomics and breeding. We report a large-scale discovery of single nucleotide polymorphisms (SNPs) using the specific length amplified fragment sequencing (SLAF-seq) technique for the construction of high-density genetic maps for two elite wine grape cultivars, 'Chardonnay' and 'Beibinghong', and their 130 F1 plants. A total of 372.53 M paired-end reads were obtained after preprocessing. The average sequencing depth was 33.81 for 'Chardonnay' (the female parent), 48.20 for 'Beibinghong' (the male parent), and 12.66 for the F1 offspring. We detected 202,349 high-quality SLAFs of which 144,972 were polymorphic; 10,042 SNPs were used to construct a genetic map that spanned 1,969.95 cM, with an average genetic distance of 0.23 cM between adjacent markers. This genetic map contains the largest molecular marker number of the grape maps so far reported. We thus demonstrate that SLAF-seq is a promising strategy for the construction of high-density genetic maps; the map that we report here is a good potential resource for QTL mapping of genes linked to major economic and agronomic traits, map-based cloning, and marker-assisted selection of grape.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Plant/genetics , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide , Vitis/genetics , Alleles , Amplified Fragment Length Polymorphism Analysis , Genetic Linkage , Genotype , Haplotypes , Phenotype , Quantitative Trait Loci/genetics , Reproducibility of Results , Species Specificity , Vitis/classification
15.
Sci Rep ; 7(1): 5492, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28710433

ABSTRACT

Genetic linkage maps are an important tool in genetic and genomic research. In this study, two hawthorn cultivars, Qiujinxing and Damianqiu, and 107 progenies from a cross between them were used for constructing a high-density genetic linkage map using the 2b-restriction site-associated DNA (2b-RAD) sequencing method, as well as for mapping quantitative trait loci (QTL) for flavonoid content. In total, 206,411,693 single-end reads were obtained, with an average sequencing depth of 57× in the parents and 23× in the progeny. After quality trimming, 117,896 high-quality 2b-RAD tags were retained, of which 42,279 were polymorphic; of these, 12,951 markers were used for constructing the genetic linkage map. The map contained 17 linkage groups and 3,894 markers, with a total map length of 1,551.97 cM and an average marker interval of 0.40 cM. QTL mapping identified 21 QTLs associated with flavonoid content in 10 linkage groups, which explained 16.30-59.00% of the variance. This is the first high-density linkage map for hawthorn, which will serve as a basis for fine-scale QTL mapping and marker-assisted selection of important traits in hawthorn germplasm and will facilitate chromosome assignment for hawthorn whole-genome assemblies in the future.


Subject(s)
Chromosome Mapping , Crataegus/genetics , Genetic Linkage , Quantitative Trait Loci/genetics , Chromosome Segregation , Flavonoids/metabolism , Genetic Markers , Genetics, Population , Genome, Plant , Heterozygote , High-Throughput Nucleotide Sequencing , Homozygote , Polymorphism, Single Nucleotide/genetics
16.
Front Plant Sci ; 6: 393, 2015.
Article in English | MEDLINE | ID: mdl-26089826

ABSTRACT

In this study, 149 F1 plants from the interspecific cross between 'Red Globe' (Vitis vinifera L.) and 'Shuangyou' (Vitis amurensis Rupr.) and the parent were used to construct a molecular genetic linkage map by using the specific length amplified fragment sequencing technique. DNA sequencing generated 41.282 Gb data consisting of 206,411,693 paired-end reads. The average sequencing depths were 68.35 for 'Red Globe,' 63.65 for 'Shuangyou,' and 8.01 for each progeny. In all, 115,629 high-quality specific length amplified fragments were detected, of which 42,279 were polymorphic. The genetic map was constructed using 7,199 of these polymorphic markers. These polymorphic markers were assigned to 19 linkage groups; the total length of the map was 1929.13 cm, with an average distance of 0.28 cm between each maker. To our knowledge, the genetic maps constructed in this study contain the largest number of molecular markers. These high-density genetic maps might form the basis for the fine quantitative trait loci mapping and molecular-assisted breeding of grape.

17.
Biotechnol Biotechnol Equip ; 28(2): 221-229, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-26019507

ABSTRACT

An F1 population was created by the cross '87-1' × '9-22'. The female parent '87-1' was an extremely early maturing cultivar with strong flavour. The male parent was an excellent breeding line producing large berries maturing late. The mapping population included 149 randomly chosen individuals. Molecular genetic map for each parent and the consensus map were constructed using simple sequence repeat and sequence-related amplified polymorphism markers by software JoinMap 3.0. The '87-1' map covers a total length of 1272.9 cM distributed in 21 linkage groups and consists of 163 molecular markers with an average distance between adjacent markers of 8.9 cM. The '9-22' map covers a total length of 1267.4 cM distributed in 20 linkage groups and consists of 158 molecular markers with an average distance between adjacent markers of 9.1 cM. The consensus map covers a total length of 1537.1 cM distributed in 21 linkage groups and one doublet and consists of 217 molecular markers with an average distance of 7.8 cM between adjacent markers. The length of the linkage groups is 69.8 cM on average. The map covers the 19 chromosomes of the Vitis genome and can lay a solid foundation for further studies such as quantative trait loci (QTL) mapping of correlated traits and marker-assisted selection.

18.
Ying Yong Sheng Tai Xue Bao ; 21(7): 1779-84, 2010 Jul.
Article in Chinese | MEDLINE | ID: mdl-20879537

ABSTRACT

Taking the tissue-cultured seedlings of grape cultivar Red Globe as test objects, this paper examined the effects of their root aqueous extracts on seedling's growth, with the allelochemicals identified by LC-MS. The results showed that 0.02 g x ml(-1) (air-dried root mass in aqueous extracts volume; the same below), 0.1 g x ml(-1), and 0.2 g x ml(-1) of the aqueous extracts inhibited the growth of the seedlings significantly, and the inhibition effect increased with increasing concentration of the extracts. The identified allelochemicals of the extracts included p-hydroxybenzoic acid, salicylic acid, phenylpropionic acid, and coumaric acid. Pot experiment showed that different concentration (0.1, 1, and 10 mmol x L(-1)) salicylic acid and phenylpropionic acid inhibited the seedling' s growth remarkably. With the increasing concentration of the two acids, the plant height, stem diameter, shoot- and root fresh mass, leaf net photosynthetic rate and starch content, and root activity of the seedlings decreased, while the leaf soluble sugar and MDA contents increased. No obvious change pattern was observed in leaf protein content.


Subject(s)
Plant Extracts/chemistry , Plant Roots/chemistry , Seedlings/drug effects , Vitis/chemistry , Phenylpropionates/isolation & purification , Phenylpropionates/pharmacology , Pheromones/isolation & purification , Pheromones/pharmacology , Salicylic Acid/isolation & purification , Salicylic Acid/pharmacology , Seedlings/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...