Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Food Chem ; 455: 139898, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38823123

ABSTRACT

Chimonanthus praecox (L.) Link kernel oil (LMO) has the potential to expand the variety of nutraceutical plant oils available and provide support for the application of functional food. This study aimed to assess the edible potential of LMO by examining its physicochemical characteristics, digestion behaviors, and nutraceutical properties. The results revealed that LMO has a high oil content of 40.84% and is particularly rich in linoleic acid (53.37-56.30%), oleic acid (22.04-25.08%) and triacylglycerol (TAG) of linoleic acid -palmitoleic acid- oleic acid (10.57-12.70%). The quality characteristics and phytochemical composition of LMO were found to be influenced by variety and extraction methods used. In simulated in vitro digestion tests, LMO showed a better lipid release rate and degree. Animal studies further demonstrated that LMO led to better TAG and cholesterol excretion compared to soybean oil and camellia oleifera oil. Overall, this study highlights the potential of LMO as a high-quality edible oil.

2.
Research (Wash D C) ; 7: 0377, 2024.
Article in English | MEDLINE | ID: mdl-38812531

ABSTRACT

4,4-Dimethylsterols constitute a unique class of phytosterols responsible for regulating endogenous cannabinoid system (ECS) functions. However, precise mechanism through which 4,4-dimethylsterols affect fat metabolism and the linkage to the ECS remain unresolved. In this study, we identified that 4,4-dimethylsterols, distinct from 4-demethseterols, act as inhibitors of fatty acid amide hydrolases (FAAHs) both in vivo and in vitro. Genetic ablation of FAAHs (faah-1) abolishes the effects of 4,4-dimethylsterols on fat accumulation and locomotion behavior in a Caenorhabditis elegans model. We confirmed that dietary intervention with 4,4-dimethylsterols in a high-fat diet (HFD) mouse model leads to a significant reduction in body weight (>11.28%) with improved lipid profiles in the liver and adipose tissues and increased fecal triacylglycerol excretion. Untargeted and targeted metabolomics further verified that 4,4-dimethylsterols influence unsaturated fatty acid biosynthesis and elevate oleoyl ethanolamine levels in the intestine. We propose a potential molecular mechanism in which 4,4-dimethylsterols engage in binding interactions with the catalytic pocket (Ser241) of FAAH-1 protein due to the shielded polarity, arising from the presence of 2 additional methyl groups (CH3). Consequently, 4,4-dimethylsterols represent an unexplored class of beneficial phytosterols that coordinate with FAAH-1 activity to reduce fat accumulation, which offers new insight into intervention strategies for treating diet-induced obesity.

3.
Clin Mol Hepatol ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38600871

ABSTRACT

Background & Aims: The shortage of donor livers hinders the development of liver transplantations. This study aimed to clarify the poor outcomes of functioned marginal liver grafts (FMLs) and provide evidence for the improvement of ischemia-free liver transplantation (IFLT) on transplantation with FMLs. Methods: Propensity score matching was used to control for confounding factors. The outcomes of the control group and FMLs were compared to demonstrate the negative impact of FMLs in liver transplantation patients. We compared the clinical improvements of the different surgical types. To elucidate the underlying mechanism, we conducted bioinformatic analysis based on transcriptome and single-cell profiles. Results: FMLs showed a significantly higher Hazard Ratio (HR: 1.969, P = 0.018) than other marginal livers. A worse 90-days survival (12.3% vs. 5.0%, P = 0.007) was observed in patients who underwent FMLs. Patients receiving FMLs had a significant overall survival benefit after IFLT (10.4% vs. 31.3%, P = 0.006). Pyroptosis and inflammation are inhibited in patients who undergo IFLT. The infiltration of Natural Killer cells was lower in liver grafts from these patients. A positive relationship was observed between IL32 and Caspase 1 (R = 0.73, P = 0.01) and Gasdermin D (R = 0.84, P = 0.0012) in the bulk transcriptome profiles. Conclusion: FMLs function as a more important negative prognostic parameter than other marginal livers do. IFLT might ameliorate liver injury in FMLs by inhibiting the infiltration of NK cells, consequently leading to the abortion of IL-32, which drives pyroptosis in monocytes and macrophages.

4.
J Hazard Mater ; 468: 133785, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38367441

ABSTRACT

BACKGROUND: Although growing evidence has shown independent links of long-term exposure to fine particulate matter (PM2.5) with cognitive impairment, the effects of its constituents remain unclear. This study aims to explore the associations of long-term exposure to ambient PM2.5 constituents' mixture with cognitive impairment in Chinese older adults, and to further identify the main contributor. METHODS: 15,274 adults ≥ 65 years old were recruited by the Chinese Longitudinal Healthy Longevity Study (CLHLS) and followed up through 7 waves during 2000-2018. Concentrations of ambient PM2.5 and its constituents (i.e., black carbon [BC], organic matter [OM], ammonium [NH4+], sulfate [SO42-], and nitrate [NO3-]) were estimated by satellite retrievals and machine learning models. Quantile-based g-computation model was employed to assess the joint effects of a mixture of 5 PM2.5 constituents and their relative contributions to cognitive impairment. Analyses stratified by age group, sex, residence (urban vs. rural), and region (north vs. south) were performed to identify vulnerable populations. RESULTS: During the average 3.03 follow-up visits (89,296.9 person-years), 4294 (28.1%) participants had developed cognitive impairment. The adjusted hazard ratio [HR] (95% confidence interval [CI]) for cognitive impairment for every quartile increase in mixture exposure to 5 PM2.5 constituents was 1.08 (1.05-1.11). BC held the largest index weight (0.69) in the positive direction in the qg-computation model, followed by OM (0.31). Subgroup analyses suggested stronger associations in younger old adults and rural residents. CONCLUSION: Long-term exposure to ambient PM2.5, particularly its constituents BC and OM, is associated with an elevated risk of cognitive impairment onset among Chinese older adults.


Subject(s)
Air Pollutants , Air Pollution , Cognitive Dysfunction , Humans , Aged , Particulate Matter/toxicity , Cohort Studies , Air Pollutants/toxicity , Environmental Exposure , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/epidemiology , China/epidemiology , Air Pollution/adverse effects
5.
Int J Surg ; 110(5): 2855-2864, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38329144

ABSTRACT

INTRODUCTION: Preservation fluid (PF) contaminations are common in conventional liver transplantation (CLT) and presumably originate from organ or PF exposures to the external environment in a non-strict sterile manner. Such exposures and PF contamination may be avoided in ischaemia-free liver transplantation (IFLT) because of the strict sterile surgical procedures. In this study, the authors evaluated the impact of IFLT on organ PF contamination. METHODS: A post-hoc analysis using data from the first randomized controlled trial of IFLT was performed to compare the incidence, pathogenic spectrum of PF contamination, and incidence of early recipient infection between IFLT and CLT. Multivariable logistic regression was used to explore risk factors for PF contamination. RESULTS: Of the 68 cases recruited in the trial, 64 were included in this post-hoc analysis. The incidence of culture-positive PF was 9.4% (3/32) in the IFLT group versus 78.1% (25/32) in the CLT group ( P <0.001). Three microorganisms were isolated from PF in the IFLT group, while 43 were isolated in the CLT group. The recipient infection rate within postoperative day 14 was 3.1% (1/32) in the IFLT group vs 15.6% (5/32) in the CLT group, although this difference did not reach statistical significance ( P =0.196). Multivariate analysis revealed that adopting IFLT is an independent protective factor for culture-positive PF. CONCLUSION: PF contamination is substantially decreased in IFLT, and IFLT application is an independent protective factor for PF contamination. Using rigorous sterile measures and effective antibiotic therapy during IFLT may decrease PF contamination.


Subject(s)
Liver Transplantation , Organ Preservation Solutions , Organ Preservation , Humans , Liver Transplantation/adverse effects , Male , Female , Middle Aged , Organ Preservation/methods , Adult , Aged
6.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3972-3980, 2024 May.
Article in English | MEDLINE | ID: mdl-38224500

ABSTRACT

Backpropagation (BP) is widely used for calculating gradients in deep neural networks (DNNs). Applied often along with stochastic gradient descent (SGD) or its variants, BP is considered as a de-facto choice in a variety of machine learning tasks including DNN training and adversarial attack/defense. Recently, a linear variant of BP named LinBP was introduced for generating more transferable adversarial examples for performing black-box attacks, by (Guo et al. 2020). Although it has been shown empirically effective in black-box attacks, theoretical studies and convergence analyses of such a method is lacking. This paper serves as a complement and somewhat an extension to Guo et al. (2020) paper, by providing theoretical analyses on LinBP in neural-network-involved learning tasks, including adversarial attack and model training. We demonstrate that, somewhat surprisingly, LinBP can lead to faster convergence in these tasks in the same hyper-parameter settings, compared to BP. We confirm our theoretical results with extensive experiments.

7.
Food Funct ; 15(2): 992-1003, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38179649

ABSTRACT

Minor constituents exhibit certain antioxidant interactions in vitro, and the effects in different media are different. However, it is not clear whether there are antioxidant interactions in cells after digestion and absorption. We utilized the cellular antioxidant evaluation model in HepG2 cells to study the antioxidant interaction between α-tocopherol and γ-oryzanol, and the interaction mechanism of a binary mixture was also illustrated. A cellular antioxidant assay (CAA) model and a combined index (CI) method were firstly used to explore the antioxidant activity and interaction of the binary mixture in HepG2 cells. The CAA value was positively correlated with the single addition concentration, while the results displayed a biphasic tendency with increasing concentrations of the binary mixture. The combination of TO11 (1 µg mL-1 α-tocopherol and 10 µg mL-1 γ-oryzanol) showed the greatest antioxidant activity and synergistic effect, and the maximum CAA value reached up to 94.84 ± 4.2. Then the mechanism of the synergistic antioxidant effect of the binary mixture was explained from three aspects including cellular uptake, intracellular reactive oxygen species (ROS) level and endogenous enzyme activity. The results demonstrated that the antioxidant interaction of the binary mixture in cells was related to cellular uptake of minor constituents, and the combination of TO11 exerted a synergistic effect by scavenging ROS and up-regulating glutathione peroxidase (GSH-Px) activity, resulting in the strongest cellular antioxidant activity. This study throws light on the nature of antioxidant interaction between minor constituents, which may contribute to the development of related functional foods and rational dietary collocation.


Subject(s)
Antioxidants , Phenylpropionates , alpha-Tocopherol , Humans , Antioxidants/pharmacology , alpha-Tocopherol/pharmacology , Reactive Oxygen Species , Hep G2 Cells
8.
Langmuir ; 40(3): 1658-1665, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38179938

ABSTRACT

The surface resistivity of boroaluminosilicate display glasses, which may affect the downstream display panel manufacturing, varies with the relative humidity (RH) of the environment, but the origin of this RH dependence has not been well understood. We have measured the water adsorption behavior on Corning Eagle XG (Glass-E) and Lotus NXT (Glass-L) glass panels using Brewster angle transmission infrared spectroscopy. The IR spectra of adsorbed water were analyzed to obtain the effective thickness of adsorbed water, the distribution of hydrogen-bonding interactions among the adsorbed water molecules, and the isosteric heat of water adsorption. These characteristics were compared with the electrical conductivity (inverse of resistivity) of these two glasses [Appl. Surf. Sci. 2015, 356, 1189]. This comparison revealed the correlation between the conductivity and the water layer structure, which could explain the surface resistivity difference between Glass-E and Glass-L as a function of RH. This study also disputed the previous hypothesis that the water adsorption isotherm would be governed by the areal density of the surface hydroxyl group; instead, it suggested that the network modifier ions may also play a critical role, especially in the intermediate RH regime.

9.
Food Funct ; 15(3): 1355-1368, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38205834

ABSTRACT

Dietary nutritional support for special populations is an effective and feasible method to improve the quality of life of patients and reduce medical pressure. Acer truncatum Bunge seed oil (ATSO) is widely recognized for its ability to promote nerve myelin regeneration. To evaluate the ameliorative effects of ATSO on chemotherapy-induced demyelination, a zebrafish model of chemotherapy-induced demyelination was established. The results showed that 100 µg mL-1 of ATSO reversed tail morphology damage, axon degeneration, touch response delay, ROS level upregulation and the expression of myelin basic protein decrease in chemotherapy-induced zebrafish. In addition, the expression of myelin markers (including sox10, krox20, and pmp22) in oxaliplatin-induced cells was markedly reversed by ATSO and its active components (gondoic acid, erucic acid, and nervonic acid). ATSO and its active components could reverse demyelination by ameliorating mitochondrial dysfunction. Conversely, linoleic acid and linolenic acid promoted demyelination by exacerbating mitochondrial dysfunction. Moreover, the Pink1/Parkin pathway was recognized as the main reason for ATSO and its active components improving mitochondrial function by activating mitophagy and restoring autophagic flow. Taken together, this study demonstrated that ATSO and its active components could be further developed as novel functional food ingredients to antagonize demyelination.


Subject(s)
Acer , Antineoplastic Agents , Demyelinating Diseases , Mitochondrial Diseases , Animals , Humans , Mitophagy , Oxaliplatin/pharmacology , Zebrafish/metabolism , Quality of Life , Seeds/metabolism , Ubiquitin-Protein Ligases/metabolism , Plant Oils/pharmacology , Antineoplastic Agents/pharmacology , Protein Serine-Threonine Kinases
10.
BMC Med Genomics ; 16(1): 314, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049811

ABSTRACT

BACKGROUND: N6-methyladenosine (m6A) mRNA modification plays a critical role in various human biological processes. However, there has been no study reported to elucidate its role in hepatic ischemia-reperfusion injury (IRI). This study was aimed to explore the expression pattern together with the potential functions of m6A regulators in hepatic IRI. METHODS: The gene expression data (GSE23649) of m6A regulators in human liver tissue samples before cold perfusion and within 2 h after portal vein perfusion from Gene Expression Omnibus database was analyzed. The candidate m6A regulators were screened using random forest (RF) model to predict the risk of hepatic IRI. The evaluation of infiltrating abundance of 23 immune cells was performed using single sample gene set enrichment analysis. Besides, quantitative real time polymerase chain reaction (qRT-PCR) assay was carried out to validate the expression of key m6A regulators in mouse hepatic IRI model. RESULTS: The expressions of WTAP, CBLL1, RBM15, and YTHDC1 were found to be increased in liver tissues 2 h after portal vein perfusion; in contrast, the expressions of LRPPRC, FTO, METTL3, and ALKBH5 were decreased. Based on RF model, we identified eight m6A methylation regulators for the prediction of the risk of hepatic IRI. Besides, a nomogram was built to predict the probability of hepatic IRI. In addition, the levels of WTAP, ALKBH5, CBLL1, FTO, RBM15B, LRPPRC and YTHDC1 were correlated with the immune infiltration of activated CD4 T cell, activated dendritic cell (DC), immature DC, mast cell, neutrophil, plasmacytoid DC, T helper (Th) cell (type 1, 2, and 17), gamma delta T cell, T follicular helper (Tfh) cell, myeloid-derived suppressor cell (MDSC), macrophage, natural killer cell, and regulatory Th cell. Among mouse hepatic IRI model, the mRNA level of CBLL1 and YTHDC1 was increased with statistical significance; however, the mRNA level of FTO and METTL3 was decreased among post-reperfusion liver samples compared with those in pre-reperfusion samples with statistical significance. CONCLUSIONS: The m6A regulators exerted a pivotal impact on hepatic IRI. The m6A patterns that found in this study might provide novel targets and strategies for the alleviation/treatment of hepatic IRI in the future.


Subject(s)
Liver , Reperfusion Injury , Mice , Animals , Humans , Methylation , Liver/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Macrophages/metabolism , RNA, Messenger/genetics , Ubiquitin-Protein Ligases/metabolism , Methyltransferases/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO
11.
Microbiol Spectr ; 11(6): e0246223, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37966208

ABSTRACT

IMPORTANCE: Epidemiological data reveal that FAdV-4 and FAdV-8a are the dominant serotypes of FAdVs in the poultry industry in China. Although three commercial inactivated vaccines against FAdV-4 have been licensed in China, the bivalent vaccine against both FAdV-4 and FAdV-8a is not available. Here, we used CRISPR-Cas9 and Cre-LoxP system to generate a recombinant virus FAdV4-F/8a-rF2 expressing the Fiber of FAdV-8a. Notably, FAdV4-F/8a-rF2 was highly attenuated and could provide efficient protection against both FAdV-4 and FAdV-8a in the chicken infection model, highlighting the applaudable application of FAdV4-F/8a-rF2 as a novel live-attenuated bivalent vaccine against the diseases caused by the infection of FAdV-4 and FAdV-8a.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Poultry Diseases , Animals , Serogroup , Adenoviridae Infections/prevention & control , Adenoviridae Infections/veterinary , Aviadenovirus/genetics , Chickens , Vaccines, Combined
12.
Biomolecules ; 13(10)2023 09 22.
Article in English | MEDLINE | ID: mdl-37892116

ABSTRACT

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a superfamily of RNA-binding proteins consisting of more than 20 members. These proteins play a crucial role in various biological processes by regulating RNA splicing, transcription, and translation through their binding to RNA. In the context of muscle development and regeneration, hnRNPs are involved in a wide range of regulatory mechanisms, including alternative splicing, transcription regulation, miRNA regulation, and mRNA stability regulation. Recent studies have also suggested a potential association between hnRNPs and muscle-related diseases. In this report, we provide an overview of our current understanding of how hnRNPs regulate RNA metabolism and emphasize the significance of the key members of the hnRNP family in muscle development. Furthermore, we explore the relationship between the hnRNP family and muscle-related diseases.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins , MicroRNAs , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , RNA-Binding Proteins/metabolism , RNA Splicing , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle Development/genetics
13.
Int J Biol Macromol ; 253(Pt 6): 127090, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37758107

ABSTRACT

κ-Carrageenan/konjac glucomannan (κ-CA/KGM) composite hydrogels often fail to meet industrial requirements due to their low gel strength and poor mechanical properties, while solid lipid nanoparticles are potential materials to address this challenge due to their good biocompatibility. In the study, we propose using Quillaja saponin-stabilized solid lipid nanoparticle (QSLN) as nanofillers to enhance properties of κ-carrageenan/konjac glucan (κ-CA/KGM) composite hydrogels, and with emphasis on the effect of QSLN filling concentration on the structure and properties of composite hydrogels and the possible mechanisms were investigated. The best performance of QSLN-filled composite hydrogels was achieved at the QSLN concentration of 2.4 %. QSLN was uniformly distributed in the hydrogel matrix and formed electrostatic interactions and hydrogen bonding interactions with the matrix at an appropriate filling level, which enhanced the textural and rheological properties of the hydrogel greatly. In addition, the results of low-field NMR experiments showed that the filling of QSLN reduced the water mobility by enhancing the entanglement of polymer chains in the hydrogel matrix, which improved the freeze-thaw stability and regulated the swelling and deswelling behavior of the composite hydrogel. However, with the increasing of QSLN filling concentration, the above improvements were weakened by the depletion of van der Waals interactions due to the large amount of QSLN aggregation and the weakening of electrostatic interaction. In turn, the hydrogel was found to modulate the crystalline behavior of QSLN by X-ray diffraction and differential scanning calorimeter monitoring. Overall, the optimal synergistic effect between structure and properties could be achieved when the QSLN filling concentration was 2.4 %. These results provide a basis for the development of products that require excellent gel properties and structure.


Subject(s)
Hydrogels , Mannans , Hydrogels/chemistry , Carrageenan/chemistry , Quillaja Saponins , Mannans/chemistry , Lipids
14.
Front Immunol ; 14: 1184409, 2023.
Article in English | MEDLINE | ID: mdl-37753085

ABSTRACT

Background: T cell-mediated acute rejection(AR) after heart transplantation(HT) ultimately results in graft failure and is a common indication for secondary transplantation. It's a serious threat to heart transplant recipients. This study aimed to explore the novel lncRNA-miRNA-mRNA networks that contributed to AR in a mouse heart transplantation model. Methods: The donor heart from Babl/C mice was transplanted to C57BL/6 mice with heterotopic implantation to the abdominal cavity. The control group was syngeneic heart transplantation with the same kind of mice donor. The whole-transcriptome sequencing was performed to obtain differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs) and lncRNAs (DElncRNAs) in mouse heart allograft. The biological functions of ceRNA networks was analyzed by GO and KEGG enrichment. Differentially expressed ceRNA involved in programmed cell death were further verified with qRT-PCR testing. Results: Lots of DEmRNAs, DEmiRNAs and DElncRNAs were identified in acute rejection and control after heart transplantation, including up-regulated 4754 DEmRNAs, 1634 DElncRNAs, 182 DEmiRNAs, and down-regulated 4365 DEmRNAs, 1761 DElncRNAs, 132 DEmiRNAs. Based on the ceRNA theory, lncRNA-miRNA-mRNA regulatory networks were constructed in allograft acute rejection response. The functional enrichment analysis indicate that the down-regulated mRNAs are mainly involved in cardiac muscle cell contraction, potassium channel activity, etc. and the up-regulated mRNAs are mainly involved in T cell differentiation and mononuclear cell migration, etc. The KEGG pathway enrichment analysis showed that the down-regulated DEmRNAs were mainly enriched in adrenergic signaling, axon guidance, calcium signaling pathway, etc. The up-regulated DEmRNAs were enriched in the adhesion function, chemokine signaling pathway, apoptosis, etc. Four lncRNA-mediated ceRNA regulatory pathways, Pvt1/miR-30c-5p/Pdgfc, 1700071M16Rik/miR-145a-3p/Pdgfc, 1700071M16Rik/miR-145a-3p/Tox, 1700071M16Rik/miR-145a-3p/Themis2, were finally validated. In addition, increased expression of PVT1, 1700071M16Rik, Tox and Themis2 may be considered as potential diagnostic gene biomarkers in AR. Conclusion: We speculated that Pvt1/miR-30c-5p/Pdgfc, 1700071M16Rik/miR-145a-3p/Pdgfc, 1700071M16Rik/miR-145a-3p/Tox and 1700071M16Rik/miR-145a-3p/Themis2 interaction pairs may serve as potential biomarkers in AR after HT.


Subject(s)
Heart Transplantation , RNA, Long Noncoding , Animals , Mice , Humans , Mice, Inbred C57BL , RNA, Long Noncoding/genetics , Heart Transplantation/adverse effects , Tissue Donors , Apoptosis , Disease Models, Animal , Allografts
15.
J Sci Food Agric ; 103(15): 7764-7774, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37482970

ABSTRACT

BACKGROUND: Phytosterol can improve its lipid solubility, lipophilic/hydrophilic balance and bioaccessibility by esterification with fatty acids, which increases its practical application range in the food industry. In the present study, small angle X-ray scattering combined with the pH-stat in vitro digestion model was applied to continuously monitor the molecular structure evolution of mixed micelles during digestion and investigate the effect of three edible oils (olive oil with 72.41 ± 0.57% oleic, sunflower seed oil with 63.45 ± 0.78% linoleic, refined linseed oil with 51.74 ± 0.34% linolenic) on bioaccessibility of stigmasterol oleate in vitro. RESULTS: The release degree and rate of fatty acids in the three edible oil systems (kOO+ST-OA = 0.0501, kSO+ ST-OA = 0.0357, kLO+ST-OA = 0.0323) was compared. The three different edible oils had similar impact on the formation of dietary mixed micelles during the simulatedin vitro digestion of stigmasterol oleate, although there were significant differences in molecular morphology and composition of mixed micelles. The results showed that the vesicles formed by linoleic oil (SO system) or linolenic oil (LO system) were easy to dissociate. The largest average number and diameter of vesicles (5.55 × 1016 cm-3 and 2230.75 Å), the most stable vesicle structure and the fastest fatty acid release rate were observed in the OO system. CONCLUSION: Compared to linoleic (SO system) or linolenic (LO system), the oleic (OO system) could facilitate the transformation of micelles to vesicles and maintain the stability of its membrane, significantly promotin the dissolution of stigmasterol and improving bioaccessibility. © 2023 Society of Chemical Industry.


Subject(s)
Oleic Acid , Stigmasterol , Micelles , X-Rays , Fatty Acids , Olive Oil
16.
Plant Physiol ; 193(1): 578-594, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37249052

ABSTRACT

Intracellular gene transfers (IGTs) between the nucleus and organelles, including plastids and mitochondria, constantly reshape the nuclear genome during evolution. Despite the substantial contribution of IGTs to genome variation, the dynamic trajectories of IGTs at the pangenomic level remain elusive. Here, we developed an approach, IGTminer, that maps the evolutionary trajectories of IGTs using collinearity and gene reannotation across multiple genome assemblies. We applied IGTminer to create a nuclear organellar gene (NOG) map across 67 genomes covering 15 Poaceae species, including important crops. The resulting NOGs were verified by experiments and sequencing data sets. Our analysis revealed that most NOGs were recently transferred and lineage specific and that Triticeae species tended to have more NOGs than other Poaceae species. Wheat (Triticum aestivum) had a higher retention rate of NOGs than maize (Zea mays) and rice (Oryza sativa), and the retained NOGs were likely involved in photosynthesis and translation pathways. Large numbers of NOG clusters were aggregated in hexaploid wheat during 2 rounds of polyploidization, contributing to the genetic diversity among modern wheat accessions. We implemented an interactive web server to facilitate the exploration of NOGs in Poaceae. In summary, this study provides resources and insights into the roles of IGTs in shaping interspecies and intraspecies genome variation and driving plant genome evolution.


Subject(s)
Oryza , Poaceae , Poaceae/genetics , Triticum/genetics , Genome, Plant/genetics , Oryza/genetics , Zea mays/genetics , Evolution, Molecular
17.
J Food Sci ; 88(6): 2397-2410, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37178315

ABSTRACT

Margarine is a typical water-in-oil (W/O) emulsion fat product. Due to the presence of a water-oil interface, the oil oxidation in the emulsion system is the interface reaction, which is much faster than that in bulk oil and shows different oxidation mechanisms. The analysis of Rancimat and electron spin resonance indicated that α-tocopherol and EGCG show synergistic antioxidant effects in the margarine. After 20 days of accelerated oxidation storage, the antioxidant effect of the compound antioxidant (50 mg/kg α-tocopherol + 350 mg/kg EGCG) on the margarine was significantly higher than that of the single antioxidant α-tocopherol and EGCG. Based on the results of antioxidants partitioning, electrochemistry, fluorescence spectroscopy, and the oxidative decomposition of antioxidants, the possible mechanisms of interaction were the promotion of α-tocopherol regeneration by EGCG, and the fact that α-tocopherol and EGCG could act at different stages and positions of oxidation. This work will contribute to studying antioxidant interactions and can provide valuable suggestions for practical production. PRACTICAL APPLICATION: This study aims to improve the oxidative stability of margarine by adding α-tocopherol and epigallocatechin-gallate (EGCG) individually and in blends. The mechanism of compound antioxidant synergistic inhibition of margarine oxidation was analyzed, providing theoretical basis and scientific basis for the research and practical application of natural antioxidant synergistic mechanism.


Subject(s)
Antioxidants , Catechin , Antioxidants/pharmacology , Antioxidants/chemistry , alpha-Tocopherol/chemistry , Margarine , Emulsions/chemistry , Oxidation-Reduction , Catechin/chemistry , Water , Oxidative Stress
18.
Front Microbiol ; 14: 1160031, 2023.
Article in English | MEDLINE | ID: mdl-37065110

ABSTRACT

Recently, the infection of serotype 4 fowl adenovirus (FAdV-4) in chicken flocks has become endemic in China, which greatly threatens the sustainable development of poultry industry. The development of recombinant FAdV-4 expressing foreign genes is an efficient strategy for controlling both FAdV-4 and other important poultry pathogens. Previous reverse genetic technique for generating the recombinant fowl adenovirus is generally inefficient. In this study, a recombinant FAdV-4 expressing enhanced green fluorescence protein (EGFP), FA4-EGFP, was used as a template virus and directly edited fiber-2 gene to develop an efficient double-fluorescence approach to generate recombinant FAdV-4 through CRISPR/Cas9 and Cre-Loxp system. Moreover, using this strategy, a recombinant virus FAdV4-HA(H9) stably expressing the HA gene of H9N2 influenza virus was generated. Chicken infection study revealed that the recombinant virus FAdV4-HA(H9) was attenuated, and could induce haemagglutination inhibition (HI) titer against H9N2 influenza virus at early time points and inhibit the viral replication in oropharynx. All these demonstrate that the novel strategy for constructing recombinant FAdV-4 expressing foreign genes developed here paves the way for rapidly developing attenuated FAdV-4-based recombinant vaccines for fighting the diseases caused by both FAdV-4 and other pathogens.

19.
Front Cell Infect Microbiol ; 13: 1177866, 2023.
Article in English | MEDLINE | ID: mdl-37065194

ABSTRACT

Recently, the highly pathogenic serotype 4 fowl adenovirus (FAdV-4) and duck adenovirus 3 (DAdV-3) were outbroken and widespread, causing substantial economic losses to the duck industry. Therefore, there is an urgent need to generate a recombinant genetic engineering vaccine candidate against both FAdV-4 and DAdV-3. In this study, a novel recombinant FAdV-4 expressing the Fiber-2 protein of DAdV-3, designated as rFAdV-4-Fiber-2/DAdV-3, was generated based on CRISPR/Cas9 and Cre-LoxP systems. Indirect immunofluorescence assay (IFA) and western blot (WB) showed that the Fiber-2 protein of DAdV-3 in rFAdV-4-Fiber-2/DAdV-3 was expressed successfully. Moreover, the growth curve revealed that rFAdV-4-Fiber-2/DAdV-3 replicated efficiently in LMH cells and even showed a stronger replication ability compared to the wild type FAdV-4. The generation of the recombinant rFAdV-4-Fiber-2/DAdV-3 provides a potential vaccine candidate against both FAdV-4 and DAdV-3.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Poultry Diseases , Vaccines , Animals , Ducks , Adenoviridae Infections/pathology , Serogroup , Antibodies, Viral , Chickens , Aviadenovirus/genetics
20.
Molecules ; 28(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37110580

ABSTRACT

The full-concentrationgradient LiNi0.9Co0.083Mn0.017O2 (CG-LNCM), consisting of core Ni-rich LiNi0.93Co0.07O2, transition zone LiNi1-x-yCoxMnyO2, and outmost shell LiNi1/3Co1/3Mn1/3O2 was prepared by a facile co-precipitation method and high-temperature calcination. CG-LNCM was then investigated with an X-ray diffractometer, ascanning electron microscope, a transmission electron microscope, and electrochemical measurements. The results demonstrate that CG-LNCM has a lower cation mixing of Li+ and Ni2+ and larger Li+ diffusion coefficients than concentration-constant LiNi0.9Co0.083Mn0.017O2 (CC-LNCM). CG-LNCM presents a higher capacity and a better rate of capability and cyclability than CC-LNCM. CG-LNCM and CC-LNCM show initial discharge capacities of 221.2 and 212.5 mAh g-1 at 0.2C (40 mA g-1) with corresponding residual discharge capacities of 177.3 and 156.1 mAh g-1 after 80 cycles, respectively. Even at high current rates of 2C and 5C, CG-LNCM exhibits high discharge capacities of 165.1 and 149.1 mAh g-1 after 100 cycles, respectively, while the residual discharge capacities of CC-LNCM are as low as 148.8 and 117.9 mAh g-1 at 2C and 5C after 100 cycles, respectively. The significantly improved electrochemical performance of CG-LNCM is attributed to its concentration-gradient microstructure and the composition distribution of concentration-gradient LiNi0.9Co0.083Mn0.017O2. The special concentration-gradient design and the facile synthesis are favorable for massive manufacturing of high-performance Ni-rich ternary cathode materials for lithium-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...