Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.862
Filter
1.
Cell Death Dis ; 15(6): 401, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849370

ABSTRACT

The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor that affects cellular phenotypes by modulating phagocytosis and metabolism, promoting cell survival, and counteracting inflammation. Its role in renal injury, in particular, unilateral ureteral obstruction (UUO) or ischemia-reperfusion injury (IRI)-induced renal injury remains unclear. In our study, WT and Trem2-/- mice were employed to evaluate the role of TREM2 in renal macrophage infiltration and tissue injury after UUO. Bone marrow-derived macrophages (BMDM) from both mouse genotypes were cultured and polarized for in vitro experiments. Next, the effects of TREM2 on renal injury and macrophage polarization in IRI mice were also explored. We found that TREM2 expression was upregulated in the obstructed kidneys. TREM2 deficiency exacerbated renal inflammation and fibrosis 3 and 7 days after UUO, in association with reduced macrophage infiltration. Trem2-/- BMDM exhibited increased apoptosis and poorer survival compared with WT BMDM. Meanwhile, TREM2 deficiency augmented M1 and M2 polarization after UUO. Consistent with the in vivo observations, TREM2 deficiency led to increased polarization of BMDM towards the M1 proinflammatory phenotype. Mechanistically, TREM2 deficiency promoted M1 and M2 polarization via the JAK-STAT pathway in the presence of TGF-ß1, thereby affecting cell survival by regulating mTOR signaling. Furthermore, cyclocreatine supplementation alleviated cell death caused by TREM2 deficiency. Additionally, we found that TREM2 deficiency promoted renal injury, fibrosis, and macrophage polarization in IRI mice. The current data suggest that TREM2 deficiency aggravates renal injury by promoting macrophage apoptosis and polarization via the JAK-STAT pathway. These findings have implications for the role of TREM2 in the regulation of renal injury that justify further evaluation.


Subject(s)
Apoptosis , Macrophages , Membrane Glycoproteins , Mice, Inbred C57BL , Receptors, Immunologic , STAT Transcription Factors , Signal Transduction , Animals , Macrophages/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Kidney/pathology , Kidney/metabolism , Mice, Knockout , Male , Fibrosis , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Ureteral Obstruction/pathology , Ureteral Obstruction/metabolism , Ureteral Obstruction/complications , Cell Polarity , TOR Serine-Threonine Kinases/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics
2.
Front Microbiol ; 15: 1385585, 2024.
Article in English | MEDLINE | ID: mdl-38827157

ABSTRACT

Multidrug-resistant bacterial infections are a major global health challenge, especially the emergence and rapid spread of methicillin-resistant Staphylococcus aureus (MRSA) urgently require alternative treatment options. Our study has identified that a magnolol derivative 6i as a promising agent with significant antibacterial activity against S. aureus and clinical MRSA isolates (MIC = 2-8 µg/mL), showing high membrane selectivity. Unlike traditional antibiotics, 6i demonstrated rapid bactericidal efficiency and a lower propensity for inducing bacterial resistance. Compound 6i also could inhibit biofilm formation and eradicate bacteria within biofilms. Mechanistic studies further revealed that 6i could target bacterial cell membranes, disrupting the integrity of the cell membrane and leading to increased DNA leakage, resulting in potent antibacterial effects. Meanwhile, 6i also showed good plasma stability and excellent biosafety. Notably, 6i displayed good in vivo antibacterial activity in a mouse skin abscess model of MRSA-16 infection, which was comparable to the positive control vancomycin. These findings indicated that the magnolol derivative 6i possessed the potential to be a novel anti-MRSA infection agent.

3.
Clin Exp Pharmacol Physiol ; 51(7): e13900, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843865

ABSTRACT

Traditional Chinese medicine, specifically the Jianpi Tiaoqi (JPTQ) decoction, has been explored for its role in treating breast cancer, particularly in inhibiting lung metastasis in affected mice. Our study evaluated the effects of JPTQ on several factors, including tumour growth, apoptosis, angiogenesis, epithelial-to-mesenchymal transition (EMT) and immune microenvironment regulation. We used bioluminescence imaging to observe in situ tumour growth and potential lung metastasis. Transcriptomic analysis provided insights into gene expression, whereas flow cytometry was used to examine changes in specific immune cells, such as CD4+ T cells and myeloid-derived suppressor cells. Several essential proteins and genes, including vascular endothelial growth factor (VEGF), matrix metalloprotein-9 (MMP-9) and B-cell lymphoma 2 (Bcl-2), were assessed through quantitative real-time polymerase chain reaction, western blotting and immunohistochemistry. Our findings showed that JPTQ treatment inhibited tumour proliferation in cancer-bearing mice. Bioluminescence imaging and pathological analysis indicated a reduction in lung metastasis. Transcriptome analysis of lung and tumour tissues indicated that the genes associated with EMT, angiogenesis, proliferation and apoptosis were regulated in the JPTQ-treated group. Kyoto Encyclopedia of Genes and Genomes analysis suggested enrichment of immune-related pathways. Flow cytometry indicated that JPTQ treatment reduced the proportion of monocyte-myeloid-derived suppressor cells in the lung and increased the number of CD4+ T cells in the peripheral blood and the number of T helper 1 (Th1) cells in the spleen (P < 0.05). E-cadherin and cleaved caspase 3 were upregulated, whereas Snail, Bcl-2, Ki67 and VEGF were downregulated in the lung and tumour tissues; moreover, the expression of MMP-9 was downregulated in the lung tissue (P < 0.05). In essence, JPTQ not only inhibits tumour growth in affected mice, but also promotes positive immune responses, reduces angiogenesis, boosts tumour cell apoptosis, reverses EMT and decreases breast cancer lung metastasis.


Subject(s)
Cell Proliferation , Drugs, Chinese Herbal , Epithelial-Mesenchymal Transition , Lung Neoplasms , Triple Negative Breast Neoplasms , Animals , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mice , Cell Proliferation/drug effects , Female , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Epithelial-Mesenchymal Transition/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Tumor Microenvironment/drug effects , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology
4.
ACS Infect Dis ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833551

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) has become a serious threat to human public health and global economic development, and there is an urgent need to develop new antimicrobial agents. Flavonoids are the largest group of plant secondary metabolites, and the anti-S. aureus and anti-MRSA activities of flavonoids have now been widely reported. The aim of this Review is to describe plant-derived flavonoid active ingredients and their effects and mechanisms of inhibitory activity against MRSA in order to provide insights for screening novel antimicrobial agents. Here, 85 plant-derived flavonoids (14 flavones, 21 flavonols, 26 flavanones, 9 isoflavones, 12 chalcones, and 3 other classes) with anti-MRSA activity are reviewed. Among these flavonoids, flavones and isoflavones generally showed the most significant anti-MRSA activity (MICs: 1-8 µg/mL). The results of the present Review display that most of the flavonoids with excellent anti-MRSA activity were derived from Morus alba L. and Paulownia tomentosa (Thunb.) Steud. The antibacterial mechanism of flavonoids against MRSA is mainly achieved by disruption of membrane structures, inhibition of efflux pumps, and inhibition of ß-lactamases and bacterial virulence factors. We hope this Review can provide insights into the development of novel antimicrobials based on natural products for treating MRSA infections.

5.
J Ethnopharmacol ; 333: 118411, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38824980

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Previous studies have revealed that a high-fat diet (HFD) promotes the progression of colorectal cancer (CRC) in close association with disturbances in the intestinal flora and metabolic disorders. Xianglian pill (XLP) is a well-established traditional prescription with unique advantages in controlling intestinal flora imbalance and inflammation. However, its therapeutic effects on HFD-related CRC remain largely unknown. AIM OF THE STUDY: The primary objective of this research was to investigate the anticancer mechanism of XLP in countering HFD-related CRC. MATERIALS AND METHODS: The protective effect of XLP was evaluated using azoxymethane (AOM) and dextran sulfate sodium (DSS)-induced CRC model of mice exposed to a HFD. The degree of colorectal carcinogenesis, including body weight, colon length, and histopathology, was measured in mice treated with XLP and untreated mice. The effect of XLP on gut microbiota and its metabolites was detected using 16S rDNA and liquid chromatography/mass spectrometry analysis. Furthermore, a "pseudo-sterile" mouse model was constructed using antibiotics (Abx) to verify whether the gut microbiota and metabolites play a role in the pathogenesis of CRC. RESULTS: XLP inhibited colorectal tumorigenesis in a dose-dependent fashion. Our findings also highlighted that XLP protected the integrity of the intestinal barrier by reducing the expression of pro-inflammatory cytokines, such as IL-6 and TNF-α, as well as the infiltration of pro-inflammatory macrophages. Mechanistically, XLP inhibited the TLR4/MyD88 pathway. Notably, the XLP treatment increased the proportion of probiotics (particularly Akkermansia) and significantly reduced fecal deoxycholic acid (DCA), a microbiota-derived metabolite of bile acids (BA) closely related to Muribaculaceae. Furthermore, after Abx treatment, XLP showed no clear antitumor effects on CRC. Simultaneously, DCA-supplemented feedings promoted colorectal tumorigenesis and provoked obvious colonic inflammation, M1 macrophage infiltration, and colonic injury. In vitro, the results of RAW-264.7 macrophages and normal intestinal epithelial cells treated with DCA corroborated our in vivo findings, demonstrating consistent patterns in inflammatory responses and intestinal barrier protein expression. CONCLUSION: Our findings suggest that XLP inhibits colorectal cancer associated with HFD via inactivating TLR4/MyD88 by remodeling gut microbiota composition and BA metabolism.

6.
Biomed Eng Online ; 23(1): 44, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705993

ABSTRACT

BACKGROUND: Osteocytes are critical mechanosensory cells in bone, and mechanically stimulated osteocytes produce exosomes that can induce osteogenesis. MicroRNAs (miRNAs) are important constituents of exosomes, and some miRNAs in osteocytes regulate osteogenic differentiation; previous studies have indicated that some differentially expressed miRNAs in mechanically strained osteocytes likely influence osteoblastic differentiation. Therefore, screening and selection of miRNAs that regulate osteogenic differentiation in exosomes of mechanically stimulated osteocytes are important. RESULTS: A mechanical tensile strain of 2500 µÎµ at 0.5 Hz 1 h per day for 3 days, elevated prostaglandin E2 (PGE2) and insulin-like growth factor-1 (IGF-1) levels and nitric oxide synthase (NOS) activity of MLO-Y4 osteocytes, and promoted osteogenic differentiation of MC3T3-E1 osteoblasts. Fourteen miRNAs differentially expressed only in MLO-Y4 osteocytes which were stimulated with mechanical tensile strain, were screened, and the miRNAs related to osteogenesis were identified. Four differentially expressed miRNAs (miR-1930-3p, miR-3110-5p, miR-3090-3p, and miR-3058-3p) were found only in mechanically strained osteocytes, and the four miRNAs, eight targeted mRNAs which were differentially expressed only in mechanically strained osteoblasts, were also identified. In addition, the mechanically strained osteocyte-derived exosomes promoted the osteoblastic differentiation of MC3T3-E1 cells in vitro, the exosomes were internalized by osteoblasts, and the up-regulated miR-3110-5p and miR-3058-3p in mechanically strained osteocytes, were both increased in the exosomes, which was verified via reverse transcription quantitative polymerase chain reaction (RT-qPCR). CONCLUSIONS: In osteocytes, a mechanical tensile strain of 2500 µÎµ at 0.5 Hz induced the fourteen differentially expressed miRNAs which probably were in exosomes of osteocytes and involved in osteogenesis. The mechanically strained osteocyte-derived exosomes which contained increased miR-3110-5p and miR-3058-3p (two of the 14 miRNAs), promoted osteoblastic differentiation.


Subject(s)
Exosomes , MicroRNAs , Osteocytes , Osteogenesis , Stress, Mechanical , Animals , Mice , Cell Line , Exosomes/metabolism , Gene Expression Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Osteocytes/cytology , Osteocytes/metabolism , Osteogenesis/genetics
7.
Drug Des Devel Ther ; 18: 1439-1457, 2024.
Article in English | MEDLINE | ID: mdl-38707616

ABSTRACT

Background: Acteoside, an active ingredient found in various medicinal herbs, is effective in the treatment of diabetic kidney disease (DKD); however, the intrinsic pharmacological mechanism of action of acteoside in the treatment of DKD remains unclear. This study utilizes a combined approach of network pharmacology and experimental validation to investigate the potential molecular mechanism systematically. Methods: First, acteoside potential targets and DKD-associated targets were aggregated from public databases. Subsequently, utilizing protein-protein interaction (PPI) networks, alongside GO and KEGG pathway enrichment analyses, we established target-pathway networks to identify core potential therapeutic targets and pathways. Further, molecular docking facilitated the confirmation of interactions between acteoside and central targets. Finally, the conjectured molecular mechanisms of acteoside against DKD were verified through experimentation on unilateral nephrectomy combined with streptozotocin (STZ) rat model. The underlying downstream mechanisms were further investigated. Results: Network pharmacology identified 129 potential intersected targets of acteoside for DKD treatment, including targets such as AKT1, TNF, Casp3, MMP9, SRC, IGF1, EGFR, HRAS, CASP8, and MAPK8. Enrichment analyses indicated the PI3K-Akt, MAPK, Metabolic, and Relaxin signaling pathways could be involved in this therapeutic context. Molecular docking revealed high-affinity binding of acteoside to PIK3R1, AKT1, and NF-κB1. In vivo studies validated the therapeutic efficacy of acteoside, demonstrating reduced blood glucose levels, improved serum Scr and BUN levels, decreased 24-hour urinary total protein (P<0.05), alongside mitigated podocyte injury (P<0.05) and ameliorated renal pathological lesions. Furthermore, this finding indicates that acteoside inhibits the expression of pyroptosis markers NLRP3, Caspase-1, IL-1ß, and IL-18 through the modulation of the PI3K/AKT/NF-κB pathway. Conclusion: Acteoside demonstrates renoprotective effects in DKD by regulating the PI3K/AKT/NF-κB signaling pathway and alleviating pyroptosis. This study explores the pharmacological mechanism underlying acteoside's efficacy in DKD treatment, providing a foundation for further basic and clinical research.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Glucosides , Molecular Docking Simulation , Network Pharmacology , Phenols , Polyphenols , Streptozocin , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Animals , Rats , Glucosides/pharmacology , Glucosides/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Male , Phenols/pharmacology , Phenols/chemistry , Rats, Sprague-Dawley
8.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200249, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38696737

ABSTRACT

OBJECTIVES: Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is an autoimmune demyelinating disease rarely associated with malignancy. We report the clinical, MRI, immunopathology, and treatment response in a person with MOGAD and melanoma. METHODS: This is a case report of a person with a multidisciplinary evaluation at a tertiary referral center. RESULTS: A 52-year-old man presented with progressive encephalomyelitis that led to identification of metastatic melanoma. Investigations revealed positive MOG-IgG at high titers in serum (1:1,000; normal, <1:20) and CSF (1:4,096; normal, <1:2). MRI demonstrated multifocal T2 lesions with enhancement in the brain and spine. Brain biopsy showed demyelination and inflammation. MOG immunostaining was not present in the tumor tissue. He initially improved with methylprednisolone, plasmapheresis, prolonged oral steroid taper, and cancer-directed treatment with BRAF and MEK 1/2 inhibitors, but then developed bilateral optic neuritis. IV immunoglobulin (IVIG) was initiated. Five months later, he developed metastases and immune checkpoint inhibitor (ICI) treatment was started, which precipitated optic neuritis and myelitis despite IVIG and prednisone. Tocilizumab, an interleukin-6 receptor blocker, was started with excellent and sustained clinical and radiologic response. DISCUSSION: This case revealed a presentation of MOGAD concurrent with melanoma without tumor MOG immunostaining. We highlight tocilizumab as a dual-purpose treatment of MOGAD and the neurologic immune-related adverse effect of ICI.


Subject(s)
Immune Checkpoint Inhibitors , Melanoma , Myelin-Oligodendrocyte Glycoprotein , Humans , Male , Melanoma/drug therapy , Middle Aged , Myelin-Oligodendrocyte Glycoprotein/immunology , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/administration & dosage , Autoantibodies/blood , Autoantibodies/cerebrospinal fluid , Demyelinating Autoimmune Diseases, CNS/immunology , Demyelinating Autoimmune Diseases, CNS/drug therapy , Demyelinating Autoimmune Diseases, CNS/chemically induced
9.
Eur J Med Chem ; 271: 116449, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38691893

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen causing clinical infections and is multi-resistant to many antibiotics, making it urgent need to develop novel antibacterials to combat MRSA. Herein, we designed and prepared a series of novel osthole amphiphiles 6a-6ad by mimicking the structures and function of antimicrobial peptides (AMPs). Antibacterial assays showed that osthole amphiphile 6aa strongly inhibited S. aureus and 10 clinical MRSA isolates with MIC values of 1-2 µg/mL, comparable to that of the commercial antibiotic vancomycin. Additionally, 6aa had the advantages of rapid bacteria killing without readily developing drug resistance, low toxicity, good membrane selectivity, and good plasma stability. Mechanistic studies indicated that 6aa possesses good membrane-targeting ability to bind to phosphatidylglycerol (PG) on the bacterial cell membranes, thereby disrupting the cell membranes and causing an increase in intracellular ROS as well as leakage of proteins and DNA, and accelerating bacterial death. Notably, in vivo activity results revealed that 6aa exhibits strong anti-MRSA efficacy than vancomycin as well as a substantial reduction in MRSA-induced proinflammatory cytokines, including TNF-α and IL-6. Given the impressive in vitro and in vivo anti-MRSA efficacy of 6aa, which makes it a potential candidate against MRSA infections.


Subject(s)
Anti-Bacterial Agents , Coumarins , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Molecular Structure , Structure-Activity Relationship , Humans , Dose-Response Relationship, Drug , Mice , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis
10.
J Chromatogr A ; 1726: 464973, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38729044

ABSTRACT

Hydrophilic interaction chromatography (HILIC) offers different selectivity than reversed-phase liquid chromatography (RPLC). However, our knowledge of the driving force for selectivity is limited and there is a need for a better understanding of the selectivity in HILIC. Quantitative assessment of retention mechanisms makes it possible to investigate selectivity based on understanding the underlying retention mechanisms. In this study, selected model compounds from the Ikegami selectivity tests were evaluated on different polar stationary phases. The study results revealed significant insights into the selectivity in HILIC. First, hydroxy and methylene selectivity is driven by hydrophilic partitioning; but surface adsorption for 2-deoxyuridine or 5-methyluridine reduces the selectivity factor. Furthermore, the retention of 2-deoxyuridine or 5-methyluridine by surface adsorption in combination with the phase ratio explain the difference in hydroxy or methylene selectivity observed among different stationary phases. Investigations on xanthine positional isomers (1-methylxanthine/3-methylxanthine, theophylline/theobromine) indicate that isomeric selectivity is controlled by surface adsorption; however, hydrophilic partitioning may contribute to resolution by enhancing overall retention. In addition, two pairs of nucleoside isomers (adenosine/vidarabine, 2'-deoxy and 3'-deoxyguanosine) provide an example that isomeric selectivity can also be controlled by hydrophilic partitioning if their partitioning coefficients are significantly different in HILIC. Although more data is needed, the current study provides a mechanistic based understanding of the selectivity in HILIC and potentially a new way to design selectivity tests.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Adsorption , Chromatography, Liquid/methods , Isomerism , Nucleosides/chemistry , Nucleosides/analysis , Chromatography, Reverse-Phase/methods , Xanthines/chemistry
11.
Mol Divers ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807000

ABSTRACT

E76A mutations of SHP2 have been reported to associate with genetic developmental diseases and cancers, and TNO155 is one of the effective inhibitors targeted to the allosteric site 1, which has already entered the clinical stage. However, the detailed binding mechanism between them still needs further clarification at micro-atomic level. In this study, the binding mechanism of TNO155 inhibiting SHP2E76A and the superiorities of TNO155 at binding affinity and dynamic interactive behavior with SHP2E76A were probed utilizing a series of computational drug design technologies. The results show that SHP2E76A forms tighter interaction with TNO155 compared to SHP099. SHP2E76A-TNO155 exhibits the largest electrostatic interaction among all complex systems, which can be manifested by the strong hydrogen bond interactions formed by two electrically charged residues, Arg111 and Glu250. Notably, in SHP2E76A-TNO155 system, Asp489 makes an additional substantial beneficial contribution. The E76A mutation brings stronger residue positive correlation and a larger conformation fluctuation between N-CH2 and PTP domains, resulting in tighter binding between TNO155 and SHP2E76A. This study offers valuable insights for the further design and development of novel SHP2E76A allosteric inhibitors.

12.
Chin Med J (Engl) ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811343

ABSTRACT

BACKGROUND: T cell dysfunction, which includes exhaustion, anergy, and senescence, is a distinct T cell differentiation state that occurs after antigen exposure. Although T cell dysfunction has been a cornerstone of cancer immunotherapy, its potential in transplant research, while not yet as extensively explored, is attracting growing interest. Interferon regulatory factor 4 (IRF4) has been shown to play a pivotal role in inducing T cell dysfunction. METHODS: A novel ultra-low-dose combination of Trametinib and Rapamycin, targeting IRF4 inhibition, was employed to investigate T cell proliferation, apoptosis, cytokine secretion, expression of T-cell dysfunction-associated molecules, effects of MAPK and mammalian target of Rapamycin (mTOR) signaling pathways, and allograft survival in both in vitro and BALB/c to C57BL/6 mouse cardiac transplantation models. RESULTS: In vitro, blockade of IRF4 in T cells effectively inhibited T cell proliferation, increased apoptosis, and significantly upregulated the expression of programmed cell death protein 1 (PD-1), Helios, CD160, and cytotoxic T lymphocyte-associated antigen (CTLA-4), markers of T cell dysfunction. Furthermore, it suppressed the secretion of pro-inflammatory cytokines interferon (IFN)-γ and interleukin (IL)-17. Combining ultra-low-dose Trametinib (0.1 mg·kg-1·day-1) and Rapamycin (0.1 mg·kg-1·day-1) demonstrably extended graft survival, with 4 out of 5 mice exceeding 100 days post-transplantation. Moreover, analysis of grafts at day 7 confirmed sustained IFN regulatory factor 4 (IRF4) inhibition, enhanced PD-1 expression, and suppressed IFN-γ secretion, reinforcing the in vivo efficacy of this IRF4-targeting approach. The combination of Trametinib and Rapamycin synergistically inhibited the MAPK and mTOR signaling network, leading to a more pronounced suppression of IRF4 expression. CONCLUSIONS: Targeting IRF4, a key regulator of T cell dysfunction, presents a promising avenue for inducing transplant immune tolerance. In this study, we demonstrate that a novel ultra-low-dose combination of Trametinib and Rapamycin synergistically suppresses the MAPK and mTOR signaling network, leading to profound IRF4 inhibition, promoting allograft acceptance, and offering a potential new therapeutic strategy for improved transplant outcomes. However, further research is necessary to elucidate the underlying pharmacological mechanisms and facilitate translation to clinical practice.

13.
Sci Total Environ ; 939: 173478, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815828

ABSTRACT

Covalent organic frameworks (COFs) are a novel type of porous materials, with unique properties, such as large specific surface areas, high porosity, pronounced crystallinity, tunable pore sizes, and easy functionalization, and thus have received considerable attention in recent years. COFs play an essential role in the catalytic degradation, adsorption, and separation of heavy metals, radionuclides. In recent years, considering several outstanding characteristics of COFs, including their good thermal/chemical stability, high crystallinity, and remarkable adsorption capacity, they have been widely used in the removal of various environment pollutants. This review primarily discusses the synthesis strategies of COFs along with their diverse synthesis methods, and provides a comprehensive summary and analysis of recent research advances in the use of COFs for removing heavy metal ions and radionuclides from water bodies. Additionally, the adsorption mechanism of COFs with regard to metal ions was determined by analyzing the structural characteristics of COFs. Finally, the future research directions on COFs adsorb rare earth element was discussed.

14.
Article in English | MEDLINE | ID: mdl-38814810

ABSTRACT

Cystic lesions of the gnathic bones present challenges in differential diagnosis. In recent years, artificial intelligence (AI) represented by deep learning (DL) has rapidly developed and emerged in the field of dental and maxillofacial radiology (DMFR) Dental radiography provides a rich resource for the study of diagnostic analysis methods for cystic lesions of the jaws and has attracted many researchers. The aim of the current study was to investigate the diagnostic performance of DL for cystic lesions of the jaws. Online searches on Google Scholar, PubMed, and IEEE Xplore databases, up to September 2023, with subsequent manual screening for confirmation. The initial search yielded 1862 titles, and 44 studies were ultimately included. All studies used DL methods or tools for the identification of a variable number of maxillofacial cysts. The performance of algorithms with different models varies. Although most of the reviewed stu dies demonstrated that DL methods have better discriminative performance than clinicians, further development is still needed before routine clinical implementation due to several challenges and limitations such as lack of model interpretability, multicenter data validation, etc Considering the current limitations and challenges, future studies for the differential diagnosis of cystic lesions of the jaws should follow actual clinical diagnostic scenarios to coordinate study design and enhance the impact of artificial intelligence in the diagnosis of oral and maxillofacial diseases.

15.
Bioorg Med Chem ; 107: 117762, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38759254

ABSTRACT

Honokiol, derived from Magnolia officinalis (a traditional Chinese medicine), has been reported to have anticancer activity. Here, a series of novel honokiol thioethers bearing a 1,3,4-oxadiazole moiety were prepared and evaluated for their anticancer activities against three types of digestive system tumor cells. Biological evaluation showed that honokiol derivative 3k exhibited the best antiproliferative activity against HCT116 cells with an IC50 value of 6.1 µmol/L, superior to the reference drug 5-fluorouracil (IC50: 9.63 ± 0.27 µmol/L). The structure-activity relationships (SARs) indicated that the introduction of -(4-NO2)Ph, 3-pyridyl, -(2-F)Ph, -(4-F)Ph, -(3-F)Ph, -(4-Cl)Ph, and -(3-Cl)Ph groups was favorable for enhancing the anticancer activity of the title honokiol thioethers. Further study revealed that honokiol thioether 3k can well inhibit the proliferation of colon cancer cells HCT116, arresting the cells in G1 phase and inducing cell death. Moreover, a preliminary mechanism study indicated that 3k directly inhibits the transcription and expression of YAP protein without activating the Hippo signaling pathway. Thus, honokiol thioether 3k could be deeply developed for the development of honokiol-based anticancer candidates.


Subject(s)
Biphenyl Compounds , Cell Proliferation , Drug Screening Assays, Antitumor , Lignans , YAP-Signaling Proteins , Humans , Lignans/pharmacology , Lignans/chemistry , Lignans/chemical synthesis , Biphenyl Compounds/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Structure-Activity Relationship , Cell Proliferation/drug effects , HCT116 Cells , YAP-Signaling Proteins/metabolism , Molecular Structure , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Sulfides/chemistry , Sulfides/pharmacology , Sulfides/chemical synthesis , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/chemical synthesis , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Allyl Compounds , Phenols
16.
J Colloid Interface Sci ; 669: 816-824, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38749220

ABSTRACT

The precise and controllable preparation of carbon nanomaterials under mild conditions poses a great challenge, especially for metal-catalysed multiphase preparation. This work proposes an efficient method that utilizing high-density ultrasound to enhance the liquid-liquid interfacial reaction system. Iron-doped carbon dots (Fe-CDs) are successfully synthesized in such a normal temperature and atmospheric-pressure reaction condition. It is shown that transient cavitation provides a high-temperature and high-pressure microenvironment for the preparation of Fe-CDs. Moreover, the size of the reactant droplets is reduced from 200.0 ± 17.3 µm to 8.1 ± 2.9 µm owing to the acoustic flow and cavitation effects, which increases the specific surface area of the two reacting phases and improves the mass transfer coefficient by more than 252.0 %. As a result, the yield increases by more than an order of magnitude (from 0.7 ± 0.1 % to 11.9 ± 0.2 %) and the Fe doping rate reaches 20.9 %. The photocatalytic oxidation conversion of 1,4-Dihydropyridine (1,4-DHP) using the obtained Fe-CDs is as high as 98.2 %. This research gives a new approach for the efficient and safe production of Fe-CDs, which is promising for industrial applications.

17.
Front Hum Neurosci ; 18: 1385360, 2024.
Article in English | MEDLINE | ID: mdl-38756843

ABSTRACT

Introduction: Accurate classification of single-trial electroencephalogram (EEG) is crucial for EEG-based target image recognition in rapid serial visual presentation (RSVP) tasks. P300 is an important component of a single-trial EEG for RSVP tasks. However, single-trial EEG are usually characterized by low signal-to-noise ratio and limited sample sizes. Methods: Given these challenges, it is necessary to optimize existing convolutional neural networks (CNNs) to improve the performance of P300 classification. The proposed CNN model called PSAEEGNet, integrates standard convolutional layers, pyramid squeeze attention (PSA) modules, and deep convolutional layers. This approach arises the extraction of temporal and spatial features of the P300 to a finer granularity level. Results: Compared with several existing single-trial EEG classification methods for RSVP tasks, the proposed model shows significantly improved performance. The mean true positive rate for PSAEEGNet is 0.7949, and the mean area under the receiver operating characteristic curve (AUC) is 0.9341 (p < 0.05). Discussion: These results suggest that the proposed model effectively extracts features from both temporal and spatial dimensions of P300, leading to a more accurate classification of single-trial EEG during RSVP tasks. Therefore, this model has the potential to significantly enhance the performance of target recognition systems based on EEG, contributing to the advancement and practical implementation of target recognition in this field.

18.
Int J Pharm ; 659: 124247, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38782153

ABSTRACT

There is a growing and urgent need for developing novel biomaterials and therapeutic approaches for efficient wound healing. Microneedles (MNs), which can penetrate necrotic tissues and biofilm barriers at the wound and deliver active ingredients to the deeper layers in a minimally invasive and painless manner, have stimulated the interests of many researchers in the wound-healing filed. Among various materials, polymeric MNs have received widespread attention due to their abundant material sources, simple and inexpensive manufacturing methods, excellent biocompatibility and adjustable mechanical strength. Meanwhile, due to the unique properties of nanomaterials, the incorporation of nanomaterials can further extend the application range of polymeric MNs to facilitate on-demand drug release and activate specific therapeutic effects in combination with other therapies. In this review, we firstly introduce the current status and challenges of wound healing, and then outline the advantages and classification of MNs. Next, we focus on the manufacturing methods of polymeric MNs and the different raw materials used for their production. Furthermore, we give a summary of polymeric MNs incorporated with several common nanomaterials for chronic wounds healing. Finally, we discuss the several challenges and future prospects of transdermal drug delivery systems using nanomaterials-based polymeric MNs in wound treatment application.

19.
Phys Rev Lett ; 132(11): 110801, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38563910

ABSTRACT

Reducing the average resource consumption is the central quest in discriminating non-orthogonal quantum states for a fixed admissible error rate ϵ. The globally optimal fixed local projective measurement for this task is found to be different from that for previous minimum-error discrimination tasks [S. Slussarenko et al., Phys. Rev. Lett. 118, 030502 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.030502]. To achieve the ultimate minimum average consumption, here we develop a general globally optimal adaptive strategy (GOA) by subtly using the updated posterior probability, which works under any error rate requirements and any one-way measurement restrictions, and can be solved by a convergent iterative relation. First, under the local measurement restrictions, our GOA is solved to serve as the local bound, which saves 16.6 copies (24%) compared with the previously best globally optimal fixed local projective measurement. When the more powerful two-copy collective measurements are allowed, our GOA is experimentally demonstrated to beat the local bound by 3.9 copies (6.0%). By exploiting both adaptivity and collective measurements, our Letter marks an important step toward minimum-consumption quantum state discrimination.

20.
Molecules ; 29(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38611956

ABSTRACT

The rational design of covalent organic frameworks (COFs) with hydrochromic properties is of significant value because of the facile and rapid detection of water in diverse fields. In this report, we present a thiazole-linked COF (TZ-COF-6) sensor with a large surface area, ultrahigh stability, and excellent crystallinity. The sensor was synthesized through a simple three-component reaction involving amine, aldehyde, and sulfur. The thiazole and methoxy groups confer strong basicity to TZ-COF-6 at the nitrogen sites, making them easily protonated reversibly by water. Therefore, TZ-COF-6 displayed color change visible to the naked eye from yellow to red when protonated, along with a red shift in absorption in the ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) when exposed to water. Importantly, the water-sensing process was not affected by polar organic solvents, demonstrating greater selectivity and sensitivity compared to other COF sensors. Therefore, TZ-COF-6 was used to detect trace amounts of water in organic solvents. In strong polar solvents, such as N,N-dimethyl formamide (DMF) and ethanol (EtOH), the limit of detection (LOD) for water was as low as 0.06% and 0.53%, respectively. Even after 8 months of storage and 15 cycles, TZ-COF-6 retained its original crystallinity and detection efficiency, displaying high stability and excellent cycle performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...