Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37688273

ABSTRACT

Thermoplastic polyurethane (TPU) materials have shown promise in tissue engineering applications due to their mechanical properties and biocompatibility. However, the addition of nanoclays to TPU can further enhance its properties. In this study, the effects of nanoclays on the microstructure, mechanical behavior, cytocompatibility, and proliferation of TPU/nanoclay (TPUNC) composite scaffolds were comprehensively investigated. The dispersion morphology of nanoclays within the TPU matrix was examined using transmission electron microscopy (TEM). It was found that the nanoclays exhibited a well-dispersed and intercalated structure, which contributed to the improved mechanical properties of the TPUNC scaffolds. Mechanical testing revealed that the addition of nanoclays significantly enhanced the compressive strength and elastic resilience of the TPUNC scaffolds. Cell viability and proliferation assays were conducted using MG63 cells cultured on the TPUNC scaffolds. The incorporation of nanoclays did not adversely affect cell viability, as evidenced by the comparable cell numbers between nanoclay-filled and unfilled TPU scaffolds. The presence of nanoclays within the TPUNC scaffolds did not disrupt cell adhesion or proliferation. The incorporation of nanoclays improved the dispersion morphology, enhanced mechanical performance, and maintained excellent biocompatibility. These findings suggest that TPUNC composites have great potential for tissue engineering applications, providing a versatile and promising scaffold material for regenerative medicine.

2.
J Phys Condens Matter ; 34(8)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34794133

ABSTRACT

Polyurethane foams (PUFs) are found everywhere in our daily life, but they suffer from poor fire resistance. In this study, expansible graphite (EG) as flame retardant was incorporated into PUFs to improve material fire resistance. With the presence of EGs in the PU matrix, bubble size in PUF became smaller as confirmed by the scanning electron microscopy. The mass density of PUFs is directly proportional to the content of EG additive. The compression strengths of EG0/PUF and EG30/PUF decrease from 0.51 MPa to 0.29 MPa. The Fourier transform infrared spectroscopy (FTIR) analysis of RPUFs showed that the addition of EGs did not change the functional group structures of RPUFs. Thermo-gravimetric analysis (TGA) testing results showed that the carbon residue weight of EG30/PUF is higher than other PU composite foams. The combination of TGA and FTIR indicated that the EG addition did not change the thermal decomposition products of EG0/PUF, but effectively inhibited its thermal decomposition rate. Cone calorimeter combustion tests indicated that the peak of the heat release rate of EG30/PUF significantly decreased to 100.5 kW m-2compared to 390.6 kW m-2for EG0/PUF. The ignition time of EG/PUF composites also increased from 2 s to 11 s with incorporation of 30 wt% EGs. The limiting oxygen index (LOI) and UL-94 standard tests show that the LOI of EG30/PUF can reach 55 vol%, and go through V-0 level. This study showed that adding EG into PU foams could significantly improve the thermal stability and flame retardancy properties of EG/PUF composites without significantly sacrificing material compression strength. The research results provide useful guidelines on industrial production and applications of PUFs.

3.
Hum Mutat ; 29(2): 306-14, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18161878

ABSTRACT

We demonstrate a new method, using a universal array approach termed multiplex allele-specific PCR-based universal array (ASPUA), and applied it to the mutation detection of hereditary hearing loss. Mutations in many different genes may be the cause of hereditary hearing loss, a sensory defect disorder. Effective methods for genetic diagnosis are clearly needed to provide clinical management. Owing to the broad genetic basis of this condition, clinical assay of such a highly heterogeneous disorder is expensive and time consuming. In ASPUA, the allele discrimination reaction is carried out in solution by multiplex allele-specific PCR and a universal solid phase array with different tag probes is used to display the PCR result. The purpose of developing the ASPUA platform was to utilize the rapidity and simplicity of the amplification refractory mutation system (ARMS) with the detection power of microarray hybridization. This is the first report of the combination of these two technologies, which allow for the completion of allele-specific detection of 11 of the most frequent mutations causing hereditary hearing loss in under 5 hr. The ASPUA platform was validated by accurately analyzing 141 patient samples that had been previously genotyped for GJB2, GJB3, SLC26A4, and MTRNR1. In addition, we also developed a simplified assay by using streptavidin-coated magnetic beads instead of fluorescence for signal display that can be assessed through a conventional light microscope. We demonstrate that the ASPUA platform is rapid, cost-effective, and easily-used, and is especially appropriate for mutation detection in clinical genetic diagnostics.


Subject(s)
Alleles , Hearing Loss/diagnosis , Mass Screening , Microarray Analysis/methods , Polymerase Chain Reaction/methods , Connexin 26 , Connexins , Humans , Light , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...