Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Digit Health ; 10: 20552076241228418, 2024.
Article in English | MEDLINE | ID: mdl-38303968

ABSTRACT

Objective: This study aimed to summarize the characteristics of the Internet hospital services of the Seventh Affiliated Hospital of Sun Yat-sen University (SAHSYSU), describe diagnosis and treatment patterns in each department, determine SAHSYSU Internet hospital's role in pandemic control, and explore development strategies in non-pandemic situations. Methods: Mixed-methods was used in this study. Qualitative organizational behavior analysis was conducted on hospital meeting records and semi-structured interview records to determine the research analysis indicators. We quantitatively analyzed online consultation record data of SAHSYSU Internet hospital from January to December 2020, and conduct classification analysis on departmental case studies using K-means clustering algorithm. Results: 29,944 patient data items were retrieved. Internet hospital services synchronized with COVID-19 pandemic development in China and Guangdong province. The service volume peaked during the period of January to March, which coincided with the height of the pandemic. Out of the total visits, 58.90% were conducted during office hours while 41.10% were conducted during non-office hours. The majority of the patients came from Guangdong (19.67%) and Hubei (9.09%) provinces. The cluster analysis identified three clusters, each with different change rates and magnitudes of change for various departments. Conclusion: Internet hospitals complemented conventional medical services, providing crucial medical care during the COVID-19 pandemic. Internet hospitals are the future trend of medical services and should be improved based on each department's treatment characteristics.

2.
Gene ; 887: 147729, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37619650

ABSTRACT

Rad51 is a recA-like recombinase that plays a crucial role in repairing DNA double-strand breaks through homologous recombination during mitosis and meiosis in mammals and other organisms. However, its role in reptiles remains largely unclear. In this study, we aimed to investigate the physiological role of the rad51 gene in reptiles, particularly in Pelodiscus sinensis. Firstly, the cDNA of rad51 gene was cloned and analyzed in P. sinensis. The cloned cDNA contained an open reading frame (ORF) of 1020 bp and encodeed a peptide of 339 amino acids. The multiple alignments and phylogenetic tree analysis of Rad51 showed that P. sinensis shares the high identity with Chelonia mydas (97.95%) and Mus musculus (95.89%). Secondly, reverse transcription-polymerase chain reaction (RT-PCR) and real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed that rad51 mRNA was highly expressed in both ovary and testis, while being weak in the somatic tissues examined in this study. Furthermore, chemical in situ hybridization (CISH) was performed to examine the expression profile of rad51 mRNA in germ cells at different stages. In the testis, rad51 mRNA expression was found to be stronger in the germ cells at early stages, specifically in spermatogonia and spermatocytes, but it was undetectable in spermatids. In the ovary, rad51 mRNA exhibited a uniform distribution in the cytoplasm of oocytes at early stages. The signal intensity of rad51 mRNA was highest in primary oocytes and gradually declined during oogenesis as the oocytes developed. These results suggest that rad51 plays a vital role in the development of germ cells, particularly during the early stages of gametogenesis in P. sinensis. The dynamic expression pattern of rad51 mRNA provides insights into the mechanisms underlying germ cell development and differentiation into gametes in turtles, even in reptiles.


Subject(s)
Turtles , Animals , Female , Male , Cloning, Molecular , DNA, Complementary/metabolism , Gametogenesis , Phylogeny , RNA, Messenger/analysis , Spermatogonia/metabolism , Testis/metabolism , Turtles/genetics
3.
Cancers (Basel) ; 15(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37345054

ABSTRACT

Macrophages are essential for the human body in both physiological and pathological conditions, engulfing undesirable substances and participating in several processes, such as organism growth, immune regulation, and maintenance of homeostasis. Macrophages play an important role in anti-bacterial and anti-tumoral responses. Aberrance in the phagocytosis of macrophages may lead to the development of several diseases, including tumors. Tumor cells can evade the phagocytosis of macrophages, and "educate" macrophages to become pro-tumoral, resulting in the reduced phagocytosis of macrophages. Hence, harnessing the phagocytosis of macrophages is an important approach to bolster the efficacy of anti-tumor treatment. In this review, we elucidated the underlying phagocytosis mechanisms, such as the equilibrium among phagocytic signals, receptors and their respective signaling pathways, macrophage activation, as well as mitochondrial fission. We also reviewed the recent progress in the area of application strategies on the basis of the phagocytosis mechanism, including strategies targeting the phagocytic signals, antibody-dependent cellular phagocytosis (ADCP), and macrophage activators. We also covered recent studies of Chimeric Antigen Receptor Macrophage (CAR-M)-based anti-tumor therapy. Furthermore, we summarized the shortcomings and future applications of each strategy and look into their prospects with the hope of providing future research directions for developing the application of macrophage phagocytosis-promoting therapy.

4.
J Cancer ; 14(8): 1321-1334, 2023.
Article in English | MEDLINE | ID: mdl-37283792

ABSTRACT

Tumor tissues consist of tumor cells and tumor stroma, which is structured by non-tumor cells and the extracellular matrix. Macrophages are the predominant immune cells in the tumor microenvironment (TME). Based on the intimate interaction between macrophages and tumor cells, macrophages are closely involved in tumor initiation and progression, playing a key role in tumor formation, angiogenesis, metastasis, and immune escape. Extracellular vesicles (EVs) are a group of membrane-enclosed structures secreted by almost all cell types. As crucial mediators of cell-to-cell communication, EVs play a role in various physiological processes and the development of diseases including cancer. According to numerous studies, tumor cell-derived extracellular vesicles (T-EVs) could highly modulate the phenotypes and functions of macrophages, thus promoting tumor development. Herein, we comprehensively introduce the role of T-EVs in regulating the M1/M2 phenotypes and immune functions of macrophages, including cytokine secretion, expression of immune regulatory molecules on the membrane, phagocytosis, and antigen presentation. More importantly, based on the regulatory effects of T-EVs on macrophages, we propose several potential therapeutic approaches that may guide future attempts to increase the effectiveness of cancer therapy.

5.
Article in English | MEDLINE | ID: mdl-36193143

ABSTRACT

Background: Vascular damage is a major consequence of bone fracture. Taohong Siwu decoction (TSD) can raise the expression of vascular endothelial growth factor (VEGF) in fracture healing. However, its molecular mechanism in promoting angiogenesis is still unknown. The aim of this study was to investigate the potential mechanisms of TSD in the regulation of osteo-angiogenesis in fracture healing. Methods: A rat tibial fracture model was established. After low- (4.5 g·kg-1), medium- (9 g·kg-1), and high-dose TSD (18 g·kg-1) and panax notoginsenoside (25 mg kg-1) treatment, hematoxylin-eosin staining was employed to visualize pathological changes in bone tissues. The levels of cytokines (interleukin (IL)-2, tumor necrosis factor-α (TNF-α), IL-6, and IL-1ß), thromboxane B2 (TXB2), and 6 ketone prostaglandin F1α (6-Keto-PGF1α) were quantified by enzyme-linked immunosorbent assay (ELISA). Immunofluorescence was used to identify the rat aortic endothelial cells (RAECs). Control serum, 10% TSD-containing serum, and 10% TSD-containing serum combined with hypoxia-inducible factor-1α (HIF-1α) inhibitor were used to treat the RAECs and rat osteoblasts. Transwell migration assay was utilized to examine the migration of the RAECs. The Matrigel tubulogenesis assay was used for the assessment of angiogenesis. The expression of angiogenesis- (von Hippel-Lindau tumor suppressor (VHL), HIF-1α, VEGF, angiopoietin-2 (Ang-2), and pVHL) and osteogenesis-related (alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteopontin-1 (OPN-1)) protein and gene was detected by western blot and quantitative real-time PCR (qRT-PCR). Results: Compared with the model group, TSD increased the trabecular bone areas, numbers, and thicknesses in fractured rats. In the plasma, the levels of cytokines and TXB2 in the middle- and high-dose TSD group were significantly lower than those in the model group (P < 0.01). The 6-keto-PGF1α content was increased by middle- and high-dose TSD intervention (P < 0.01). Compared to the control serum group, the angiogenesis and migration of the RAECs were enhanced in the TSD group (P < 0.001). The expression of HIF-1α, VEGF, and Ang-2 in the TSD group upregulated significantly (P < 0.001). VHL and pVHL were inhibited under TSD-containing serum treatment (P < 0.001). ALP, Runx2, and OPN-1 were increased obviously in the TSD group (P < 0.001). Nevertheless, the HIF-1α inhibitor reversed these changes (P < 0.001). Conclusion: TSD promotes angiogenesis and osteogenesis by regulating the HIF-1α signaling pathway. Meanwhile, it can effectively reduce the risk of inflammation and improve blood circulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...