Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 23(1): 509, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875794

ABSTRACT

BACKGROUND: Industrial hemp is an important industrial crop and has strong resistance to saline-alkaline stress. However, research on the industrial hemp response to NaHCO3 stress is limited. Therefore, the response mechanisms of industrial hemp under NaHCO3 stress were analysed through miRNA-mRNA regulatory networks. RESULTS: Seedlings of two salt-alkali tolerant and sensitive varieties were cultured in a solution containing 100 mM NaHCO3 and randomly sampled at 0, 6, 12, and 24 h. With prolonged NaHCO3 stress, the seedlings gradually withered, and the contents of jasmonic acid, lignin, trehalose, soluble protein, peroxidase, and superoxide dismutase in the roots increased significantly. The abscisic acid content decreased and then gradually increased. Overall, 18,215 mRNAs and 74 miRNAs were identified as differentially expressed under NaHCO3 stress. The network showed that 230 miRNA-mRNA interactions involved 16 miRNAs and 179 mRNAs, including some key hub novel mRNAs of these crucial pathways. Carbon metabolism, starch, sucrose metabolism, plant hormone signal transduction, and the spliceosome (SPL) were crucial pathways in industrial hemp's response to NaHCO3 stress. CONCLUSIONS: It is speculated that industrial hemp can regulate SPL pathway by upregulating miRNAs such as novel_miR_179 and novel_miR_75, thus affecting starch and sucrose metabolism, plant hormone signal transduction and carbon metabolism and improving key physiological indices such as jasmonic acid content, trehalose content, and peroxidase and superoxide dismutase activities under NaHCO3 stress.


Subject(s)
Cannabis , MicroRNAs , Cannabis/genetics , Cannabis/metabolism , RNA, Messenger/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Growth Regulators , Trehalose , Superoxide Dismutase , Peroxidase , Carbon , Starch , Sucrose
2.
Front Microbiol ; 14: 1207125, 2023.
Article in English | MEDLINE | ID: mdl-37799610

ABSTRACT

Coumarin-3-carboxylic acid (3-CCA), previously screened from natural coumarins, was found to possess strong antibacterial activity against Acidovorax citrulli (Ac). In order to further evaluate the activity of this compound against plant bacterial pathogens and explore its potential value as a bactericidal lead compound, the activity of 3-CCA against 14 plant pathogenic bacteria in vitro and in vivo was tested. Results showed that 3-CCA exhibited strong in vitro activities against Ac, Ralstonia solanacearum, Xanthomonas axonopodis pv. manihotis, X. oryzae pv. oryzae, and Dickeya zeae with EC50 values ranging from 26.64 µg/mL to 40.73 µg/mL. Pot experiment results showed that 3-CCA had powerful protective and curative effects against Ac. In addition, the protective efficiency of 3-CCA was almost equivalent to that of thiodiazole copper at the same concentration. The results of SEM and TEM observation and conductivity tests showed that 3-CCA disrupted the integrity of the cell membrane and inhibited polar flagella growth. Furthermore, 3-CCA resulted in reductions in motility and extracellular exopolysaccharide (EPS) production of Ac while inhibiting the biofilm formation of Ac. These findings indicate that 3-CCA could be a promising natural lead compound against plant bacterial pathogens to explore novel antibacterial agents.

3.
Front Physiol ; 14: 1153249, 2023.
Article in English | MEDLINE | ID: mdl-37584015

ABSTRACT

Aphis glycines Matsumura (Hemiptera: Aphididae) is a major soybean pest that often poses a serious threat to soybean production. Imidacloprid is one of the commonly used insecticides to control the soybean aphid. To investigate the effect of termination of imidacloprid stress on the adaptive strategies of soybean aphid populations, we studied the growth, development, and related metabolism changes when the stress was terminated after 24 generations of imidacloprid stress on A. glycines. The results show that the A. glycines population accelerated its recovery and expanded its population size across generations. The longevity of the adults of the recovering population in the F12, F18, and F24 generations, respectively, was 1.11, 1.15, and 1.11 times longer than the control, while the fecundity was 10.38%, 11.74%, and 11.61% higher than that of the control. The net reproductive rate (R 0) of the recovering population was always significantly higher than that of the control in the F1 to F24 generations. In addition, metabolisms related to the regulation of cell proliferation and oocyte meiosis were significantly upregulated in the recovering population. Even when the imidacloprid pressure disappeared, intergenerational stimuli still affected the adaptive strategies of soybean aphid populations. This effect was manifested as inhibiting the growth and development of the soybean aphid in the early generations and improving the fecundity of the soybean aphid in the later generations. Adaptive soybean aphid populations would surge in the absence of imidacloprid pressure. This study provides an important reference for exploring the adaptability of the A. glycines population under termination of stress from low lethal concentrations of imidacloprid across generations. It also provides important data for monitoring the population dynamics of A. glycines in the field and analyzing the degree of pharmacodynamic stress.

4.
BMC Plant Biol ; 22(1): 489, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36229784

ABSTRACT

BACKGROUND: To advance the understanding of adzuki bean (Vigna angularis) resistance to infection with the rust-causing fungus Uromyces vignae (Uv), we comprehensively analyzed histological events and the transcriptome of Uv-infected adzuki bean. RESULTS: Compared with the susceptible cv. Baoqinghong (BQH), the resistant cv. QH1 showed inhibition of uredospore germination and substomatal vesicle development, intense autofluorescence of cells around the infection site, and cell wall deposit formation in response to Uv infection. In cv. QH1, gene set enrichment analysis (GSEA) showed enrichment of chitin catabolic processes and responses to biotic stimuli at 24 h post-inoculation (hpi) and cell wall modification and structural constituent of cytoskeleton at 48 hpi. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated enrichment of WRKY transcription factors (TFs), the calcium binding protein cml, and hydroquinone glucosyltransferase at both 24 and 48 hpi. In total, 1992 and 557 differentially expressed genes (DEGs) were identified at 24 and 48 hpi, respectively. Cell surface pattern-recognition receptors (PRRs), WRKY TFs, defense-associated pathogenesis-related (PR) proteins, and lignin and antimicrobial phenolic compound biosynthesis were significantly induced. Finally, we detected the chitinase (CHI) and phenylalanine ammonia-lyase (PAL) activity were higher in QH1 and increased much earlier than in BQH. CONCLUSION: In cv. QH1, cell-surface PRRs rapidly recognize Uv invasion and activate the corresponding TFs to increase the transcription of defense-related genes and corresponding enzymatic activities to prevent fungal development and spread in host tissues.


Subject(s)
Chitinases , Vigna , Basidiomycota , Calcium-Binding Proteins , Chitin , Chitinases/genetics , Glucosyltransferases , Hydroquinones , Lignin , Phenylalanine Ammonia-Lyase , Transcription Factors
5.
Elife ; 112022 09 26.
Article in English | MEDLINE | ID: mdl-36155135

ABSTRACT

Chlamydia trachomatis (Ctr) can persist over extended times within their host cell and thereby establish chronic infections. One of the major inducers of chlamydial persistence is interferon-gamma (IFN-γ) released by immune cells as a mechanism of immune defence. IFN-γ activates the catabolic depletion of L-tryptophan (Trp) via indoleamine-2,3-dioxygenase (IDO), resulting in persistent Ctr. Here, we show that IFN-γ induces the downregulation of c-Myc, the key regulator of host cell metabolism, in a STAT1-dependent manner. Expression of c-Myc rescued Ctr from IFN-γ-induced persistence in cell lines and human fallopian tube organoids. Trp concentrations control c-Myc levels most likely via the PI3K-GSK3ß axis. Unbiased metabolic analysis revealed that Ctr infection reprograms the host cell tricarboxylic acid (TCA) cycle to support pyrimidine biosynthesis. Addition of TCA cycle intermediates or pyrimidine/purine nucleosides to infected cells rescued Ctr from IFN-γ-induced persistence. Thus, our results challenge the longstanding hypothesis of Trp depletion through IDO as the major mechanism of IFN-γ-induced metabolic immune defence and significantly extends the understanding of the role of IFN-γ as a broad modulator of host cell metabolism.


Subject(s)
Chlamydia trachomatis , Interferon-gamma , Proto-Oncogene Proteins c-myc , Cell Line , Chlamydia trachomatis/physiology , Female , Glycogen Synthase Kinase 3 beta , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma/metabolism , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Purine Nucleosides , Pyrimidines , Tricarboxylic Acids , Tryptophan/metabolism
6.
Front Plant Sci ; 13: 796694, 2022.
Article in English | MEDLINE | ID: mdl-35498667

ABSTRACT

Mung bean is characterized by having a good edible and medicinal value, while its flowers and pods have low production. Being a tertiary amine, DCPTA [2-(3,4-dichlorophenoxy) triethylamine] substantially regulates the growth and development of crops, maintaining production. Yet it is still limited in terms of the regulation of DCPTA on growth and development, including the yield and sugar metabolism of mung bean. In this study, DCPTA was sprayed at the beginning of mung flowering through a two-season cultivation, to assess its effects on the yield, leaf area per plant, plant height, seed setting rate, photosynthesis, chlorophyll content, and endogenous protective enzymes. Experimental results illustrated that relative to the control (CK), the DCPTA application significantly (p < 0.05) improved the yield of Bailv 11 mung bean, which rose to 6.9% in 2020 and 7.8% in 2021, respectively. This effect positively corresponded to a significant (p<0.05) increase in the number of pods and grains per plant and pod setting rate, but a non-significant difference in 1,000-grain weight. DCPA application also increased the area and fresh weight of leaf, mung height, and its organ dry weight (i.e., leaf, branch, and stem). During plant growth over DCPTA application, the increased activities of SOD, POD, and CAT improved the net photosynthetic rate, stomatal conductance, and transpiration. In addition, transcriptome sequencing further demonstrated that DCPTA treatment significantly (p < 0.05) up-regulated the sucrose synthase, invertase, and fructose kinase in all organs (i.e., leaves, pod skins, and grains) of the plant. In particular, this effect was much greater in the sucrose synthesis (i.e., sucrose content) in leaves. Our study, therefore, concludes that DCPTA application promotes the yield of mung bean via likely enhancing its photosynthetic capacity and sucrose synthase, fructokinase, and beta-fructofuranosidase expression regulation.

8.
Int J Mol Sci ; 22(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34830077

ABSTRACT

The CHYR (CHY ZINC-FINGER AND RING FINGER PROTEIN) proteins have been functionally characterized in iron regulation and stress response in Arabidopsis, rice and Populus. However, their roles in soybean have not yet been systematically investigated. Here, in this study, 16 GmCHYR genes with conserved Zinc_ribbon, CHY zinc finger and Ring finger domains were obtained and divided into three groups. Moreover, additional 2-3 hemerythrin domains could be found in the N terminus of Group III. Phylogenetic and homology analysis of CHYRs in green plants indicated that three groups might originate from different ancestors. Expectedly, GmCHYR genes shared similar conserved domains/motifs distribution within the same group. Gene expression analysis uncovered their special expression patterns in different soybean tissues/organs and under various abiotic stresses. Group I and II members were mainly involved in salt and alkaline stresses. The expression of Group III members was induced/repressed by dehydration, salt and alkaline stresses, indicating their diverse roles in response to abiotic stress. In conclusion, our work will benefit for further revealing the biological roles of GmCHYRs.


Subject(s)
Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Glycine max , Multigene Family , Soybean Proteins , Ubiquitin-Protein Ligases , Genome-Wide Association Study , Soybean Proteins/biosynthesis , Soybean Proteins/genetics , Glycine max/enzymology , Glycine max/genetics , Ubiquitin-Protein Ligases/biosynthesis , Ubiquitin-Protein Ligases/genetics
9.
Sci Rep ; 11(1): 10389, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001988

ABSTRACT

Vaccines based on live attenuated Chlamydia elementary bodies (EBs) can cause disease in vaccinated animals and the comparably safer inactivated whole EBs are only marginally protective. Recent studies show that a vaccine formulation comprising UV-inactivated EBs (EB) and appropriate mucosal delivery systems and/or adjuvants induced significant protective immunity. We tested the hypothesis that intranasal delivery of UV-inactivated C. psittaci EB formulated in Vibrio cholerae ghosts (VCG)-chitosan nanoparticles will induce protective immunity against intranasal challenge in SPF chickens. We first compared the impact of VCG and CpG adjuvants on protective immunity following IN mucosal and IM systemic delivery of EB formulated in chitosan hydrogel/microspheres. Immunologic analysis revealed that IN immunization in the presence of VCG induced higher levels of IFN-γ response than IM delivery or the CpG adjuvanted groups. Also, vaccine efficacy evaluation showed enhanced pharyngeal bacterial clearance and protection against lung lesions with the VCG adjuvanted vaccine formulation, thereby establishing the superior adjuvanticity of VCG over CpG. We next evaluated the impact of different concentrations of VCG on protective immunity following IN mucosal immunization. Interestingly, the adjuvanticity of VCG was concentration-dependent, since protective immunity induced following IN mucosal immunization showed dose-dependent immune responses and protection. These studies reveal that formulation of inactivated chlamydial antigens with adjuvants, such as VCG and chitosan increases their ability to induce protective immune responses against challenge.


Subject(s)
Chitosan/pharmacology , Chlamydophila psittaci/immunology , Nanoparticles/chemistry , Psittacosis/drug therapy , Administration, Intranasal , Animals , Antigens, Bacterial/pharmacology , Bacterial Vaccines/immunology , Bacterial Vaccines/pharmacology , Chickens/microbiology , Chitosan/chemistry , Chlamydophila psittaci/pathogenicity , Humans , Immunity, Mucosal/immunology , Injections, Intramuscular , Interferon-gamma/genetics , Mice , Vibrio cholerae/immunology , Vibrio cholerae/pathogenicity
10.
Animals (Basel) ; 10(4)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326284

ABSTRACT

In a pilot study, simultaneous infection with Chlamydia psittaci (C. psittaci) and H9N2 virus induced 20% mortality and severe avian airsacculitis, shedding light on animal models of poultry respiratory diseases. However, the pathogenesis is still unclear. In the current study, we hypothesized that C. psittaci infection execrates macrophage function and facilitates H9N2 infection. To explore the potential mechanism, we studied the effect of C. psittaci and H9N2 on the functions of HD11 cells in vitro by simultaneous infection of C. psittaci and H9N2. At the same time, we used infection with C. psittaci or H9N2 alone as the control groups. The results showed that coinfection with C. psittaci and H9N2 could significantly aggravate the mortality of HD11 cells compared to C. psittaci or H9N2 infection alone. In addition, coinfection with C. psittaci and H9N2 did not induce high C. psittaci loads compared to C. psittaci infection alone at 12- and 24-hours post-inoculation (hpi), but coinfection with C. psittaci and H9N2 could increase the loads of H9N2 compared to H9N2 alone in HD11 cells at 12 hpi. More importantly, inducible nitric oxide synthase (iNOS) expression levels, enzyme activity, nitric oxide (NO) production, and phagocytosis were reduced significantly in the group with C. psittaci and H9N2 coinfection compared to those of H9N2 or C. psittaci alone at 24 hpi. Finally, C. psittaci infection induced robust expressions of type Th2 cytokines interleukin (IL)-4 and IL-10, while interferon gamma (IFN-γ) and tumor necrosis factor-α (TNF-α) displayed a significant decrease compared to H9N2 infection alone at 24 hpi. All the above data indicate that C. psittaci infection can facilitate H9N2 invasion and to aggravate severe avian airsacculitis by impairing macrophage functions.

11.
Int J Mol Sci ; 21(7)2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32290117

ABSTRACT

The authors would like to make the following corrections to their paper, published in the International Journal of Molecular Sciences [...].

12.
Int J Mol Sci ; 21(6)2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32183481

ABSTRACT

The polymorphic membrane protein D (PmpD) is a highly conserved outer membrane protein which plays an important role in pathogenesis during Chlamydia psittaci infection. In this study, we evaluated the ability of the N-terminus of PmpD (PmpD-N) to modulate the functions of chicken macrophages and the signaling pathway(s) involved in PmpD-N-induced Toll-like receptors (TLRs), as well as interleukin (IL)-6 and IL-10 cytokine secretions. Thus, HD11 macrophages were treated with exogenous and intracellular PmpD-N of C. psittaci. The chlamydial growth was evaluated by enumeration of chlamydial loads in the infected macrophages. The phagocytic function of macrophages following PmpD-N treatment was detected by fluorescein-labeled Escherichia coli (E. coli). The concentration of nitric oxide (NO) secreted by HD11 macrophages was measured by the amount of NO2- in the culture supernatant using the Griess method. The cytokine secretions were assessed using multiplex cytokine ELISA kits. Expression levels of TLRs, myeloid differentiation factor 88 (MyD88), and nuclear factor kappa B (NF-κB) were analyzed by a Western blotting assay, as well as a luciferase assay, while NF-κB p65 nuclear translocation was assessed by confocal microscopy. The nuclear translocation of the transcription factor NF-κB was confirmed by evaluating its ability to combine with the corresponding promoter using the electrophoretic mobility shift assay (EMSA). After treatment with exogenous or endogenous PmpD-N, chlamydial loads and phagocytic functions were reduced significantly compared with those of the plasmid vector group, while NO secretions were reduced significantly compared with those of the lipopolysaccharide (LPS) treatment. Stimulation of HD11 cells with PmpD-N provoked the secretion of the Th2 cytokines, IL-6, and IL-10 and upregulated the expression of TLR2, TLR4, MyD88, and NF-κB. Furthermore, inhibition of TLR2, MyD88, and NF-κB in HD11 cells significantly decreased IL-6 and IL-10 cytokine levels, while NO production and phagocytosis increased significantly, strongly suggesting their involvement in PmpD-N-induced Th2 cytokine secretion and macrophage dysfunction. Our data indicate that C. psittaci PmpD-N inhibited macrophage functions by activating the Th2 immune response and the TLR2/MyD88/NF-κB signaling pathway.


Subject(s)
Avian Proteins/immunology , Bacterial Proteins/immunology , Chlamydophila psittaci/immunology , Macrophages/immunology , Membrane Proteins/immunology , Myeloid Differentiation Factor 88/immunology , NF-kappa B/immunology , Signal Transduction/immunology , Th2 Cells/immunology , Toll-Like Receptor 2/immunology , Animals , Cell Line , Chickens , Macrophages/microbiology , Poultry Diseases/immunology , Poultry Diseases/microbiology , Psittacosis/immunology , Psittacosis/microbiology , Psittacosis/veterinary
13.
Avian Pathol ; 49(3): 251-260, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31951466

ABSTRACT

Chlamydia psittaci is an important zoonotic pathogen and its oral route of infection plays an important role in the transmission and persistence. Bacillus cereus (B. cereus) strain, a common contaminant of animal feed and feedstuffs, can cause severe diarrhoea and malnutrition in poultry. In our previous study, a B. cereus strain (Dawu C), isolated from the haemorrhagic lungs of infected chickens, was shown to harbour two virulence genes (hblC and cytk) and was able to induce haemorrhagic lesions in the lungs, as well as gizzard erosion and ulceration (GEU) syndrome in broilers. In the present study, we tested the hypothesis that B. cereus-induced GEU would aggravate C. psittaci infection. Our results showed that SPF chickens exposed to B. cereus developed a severe GEU syndrome. More interestingly, prior infection with B. cereus facilitated C. psittaci infection, and aggravated GEU and respiratory distress, which were accompanied by high chlamydial loads in the lungs and severe lesions in respiratory organs. Moreover, levels of local inflammatory cytokines were elevated and T cell responses were impaired in the infected birds. In conclusion, GEU caused by B. cereus may facilitate chlamydial transmission from the ventriculus to the lungs.RESEARCH HIGHLIGHTS Bacillus cereus contributes to the gizzard erosion and ulceration syndrome in chickens.Exposure to Bacillus cereus exacerbates pneumonia in birds following chlamydial infection.Bacillus cereus facilitates persistent chlamydial infection and exacerbates immune responses.


Subject(s)
Bacillus cereus , Chlamydia Infections/veterinary , Chlamydophila psittaci , Food Microbiology , Hemorrhage/veterinary , Pneumonia/microbiology , Animal Feed/analysis , Animals , Antibodies, Bacterial/blood , Antibody Specificity , Chickens , Chlamydia Infections/complications , Chlamydia Infections/pathology , Cytokines , Gizzard, Avian/microbiology , Gizzard, Avian/pathology , Hemorrhage/microbiology , Immunoglobulin G/blood , Pneumonia/pathology , Specific Pathogen-Free Organisms , Stomach Diseases/microbiology , Stomach Diseases/pathology
14.
Sci Rep ; 9(1): 7231, 2019 05 10.
Article in English | MEDLINE | ID: mdl-31076729

ABSTRACT

Avian influenza virus subtype H9N2 is identified in chickens with respiratory disease while Bacillus cereus (B. cereus) has been frequently isolated from chicken feed in China. However, the roles of co-infection with these two pathogens remain unclear. In the present study, SPF chicks were intragastrically administered with 108 CFU/mL of B. cereus for 7 days and then inoculated intranasally with 100 EID50 of H9N2 three days later. Alternatively, chickens were initially inoculated with H9N2 and then with B. cereus for one week. Post administration, typical respiratory distress persisted for 5 days in both co-infection groups. Gizzard erosions developed in the groups B. cereus/H9N2 and B. cereus group on 7th day while in group H9N2/B. cereus on 14th day. More importantly, both air-sac lesions and lung damage increased significantly in the co-infection group. Significant inflammatory changes were observed in the B. cereus group from day 7 to day 21. Moreover, higher loads of H9N2 virus were found in the co-infected groups than in the H9N2 group. Newcastle Disease Virus (NDV) specific antibodies were decreased significantly in the H9N2/B. cereus group compared to the B. cereus and the B. cereus/H9N2 groups. Nonspecific IgA titers were reduced significantly in the B. cereus group and the H9N2/B. cereus group compared to the control group. In addition to this, lower lymphocyte proliferation was found in the con-infection groups and the H9N2 group. Hence, feed-borne B. cereus contamination potentially exacerbates gizzard ulceration and aggravates H9N2-induced respiratory distress by inhibiting antibody-mediated immunity and pathogen clearance. Thus controlling the B. cereus contamination in poultry feed is immediately needed.


Subject(s)
Bacillus cereus/pathogenicity , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza in Birds/pathology , Pneumonia/pathology , Poultry Diseases/pathology , Air Sacs/microbiology , Air Sacs/pathology , Animals , Antibodies, Viral/blood , Chickens , Coinfection/pathology , Coinfection/veterinary , Cytokines/metabolism , Gizzard, Avian/microbiology , Gizzard, Avian/pathology , Immunoglobulin A/blood , Influenza in Birds/virology , Lung/microbiology , Lung/pathology , Lymphocytes/cytology , Newcastle disease virus/immunology , Pneumonia/veterinary , Poultry Diseases/microbiology , Poultry Diseases/virology , Stomach Diseases/microbiology , Stomach Diseases/pathology , Stomach Diseases/veterinary
15.
Plant Sci ; 283: 70-82, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31128717

ABSTRACT

A Glycine soja receptor like cytoplasmic kinase GsCBRLK was previously characterized as a positive regulator of salt tolerance. However, how GsCBRLK regulates stress responses remains obscure. Here, we report the interaction between GsCBRLK and a group 3 late embryogenesis abundant protein GsPM30, and suggest its role in stress responses. GsPM30 was found to physically associate with GsCBRLK through yeast two hybrid assays, which was verified by bimolecular fluorescence complementation analysis. Deletion analyses showed that the N-terminal variable domain of GsCBRLK was sufficient for GsPM30 interaction. Besides GsPM30, GsCBRLK could associate with several group 3 LEAs, of which the N-terminus sequences show high identity with GsPM30. Lower binding affinity or even no interaction was observed between GsCBRLK and other group 3 LEAs, which are less closely related to GsPM30. Furthermore, we observed that GsPM30 could localize surrounding the internal circumference of plant cells, as well as in cytoplasm and nucleus. In addition, GUS staining and quantitative real-time PCR results suggested the ubiquitous expression in different tissues and induced expression by NaCl and mannitol treatments for GsPM30. Consistently, GsPM30 overexpression in Arabidopsis caused increased tolerance to high salinity and dehydration/water deficit at both the young and adult seedling stages. Our results demonstrated the interaction between GsCBRLK and LEAs, and revealed the positive role of GsPM30 in stress responses.


Subject(s)
Glycine max/physiology , Plant Proteins/physiology , Arabidopsis , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Real-Time Polymerase Chain Reaction , Seeds/growth & development , Sequence Alignment , Glycine max/genetics , Glycine max/metabolism , Stress, Physiological , Two-Hybrid System Techniques
16.
Pestic Biochem Physiol ; 147: 75-82, 2018 May.
Article in English | MEDLINE | ID: mdl-29933996

ABSTRACT

In our previous study on natural products with fungicidal activity, pseudolaric acid B (PAB) isolated from Pseudolarix amabilis was examined to inhibit significantly mango anthracnose (Colletotrichum gloeosporioides) in vivo and in vitro. In the current study, sensitivity of 17 plant pathogenic fungi to PAB was determined. Mycelial growth rate results showed that PAB possessed strong antifungal activities to eleven fungi with median effective concentration (EC50) values ranging from 0.087 to 1.927µg/mL. EC50 of PAB against spore germination was greater than that of mycelium growth inhibition, which suggest that PAB could execute antifungal activity through mycelial growth inhibition. Further action mechanism of PAB against C. gloeosporioides was investigated, in which PAB treatment inhibited mycelia dry weight, decreased the mycelia reducing sugar and soluble protein. Furthermore, PAB induced an increase in membrane permeability, inhibited the biosynthesis of ergosterol, caused the extreme alteration in ultrastructure as indicated by the thickened cell wall and increased vesicles. These results will increase our understanding of action mechanism of PAB against plant pathogenic fungi.


Subject(s)
Antifungal Agents/pharmacology , Colletotrichum/drug effects , Diterpenes/pharmacology , Plant Diseases/prevention & control , Cell Membrane Permeability/drug effects , Colletotrichum/growth & development , Colletotrichum/physiology , Ergosterol/antagonists & inhibitors , Ergosterol/biosynthesis , Hyphae/ultrastructure , Mangifera/microbiology , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Mycelium/drug effects , Mycelium/growth & development , Plant Diseases/microbiology , Spores, Fungal/drug effects
17.
Microb Pathog ; 114: 233-238, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29217325

ABSTRACT

Protocatechuic acid (PCA) is an antiviral agent against Avian Influenza virus (AIV) and Infectious Bursal Disease (IBD) virus, but its antiviral mechanism is unknown. In this study, we evaluated the humoral and cellular responses to PCA in specific pathogen-free (SPF) chickens. One hundred forty 35-day-old SPF chickens were randomly divided into 7 groups. The birds were inoculated with the commercial, attenuated Newcastle Disease Virus (NDV) vaccine and then received orally with 10, 20 or 40 mg/kg body weight of PCA for 30 days. Immune organ indexes, anti-Newcastle Disease Virus (NDV) antibodies and lymphocyte proliferation, but not body weight, were significantly increased in chicken treated with 40 mg/kg PCA, compared to the control birds treated with Astragalus polysaccharide (ASP). Survival rate was 70% and 60%, respectively, in the chickens with 40 mg/kg PCA, 20 mg/kg PCA while 50% survival was found in the birds treated with 125 mg/kg ASP. PCA treatment resulted in significantly lower viral load and reduced shedding. These results indicate that PCA may improve poultry health by enhancing both the humoral and cellular immune response.


Subject(s)
Antiviral Agents/administration & dosage , Hydroxybenzoates/administration & dosage , Newcastle Disease/drug therapy , Newcastle Disease/immunology , Newcastle disease virus/drug effects , Poultry Diseases/drug therapy , Poultry Diseases/immunology , Animals , Chickens , Newcastle Disease/virology , Newcastle disease virus/physiology , Poultry Diseases/virology , Specific Pathogen-Free Organisms
18.
Sci Rep ; 7(1): 13997, 2017 10 25.
Article in English | MEDLINE | ID: mdl-29070907

ABSTRACT

Since 2007, most areas of China have seen outbreaks of poultry airsacculitis, which causes hugely economic losses to the poultry industry. However, there are no effective measures to combat the problem. In this study, 105 rations were collected to isolate Aspergillus spp. from the diseased farms. In subsequent experiments, SPF chickens were inoculated with Ornithobacterium rhinotracheale (ORT), Chlamydia psittaci (C. psittaci) and Aspergillus fumigatus (A. fumigatus), and mortality rate, body weight gain and lesion score were evaluated. Of these ration samples, 63 (60.0%) were A. fumigates, 21 (20.0%) were Aspergillus niger (A. niger) and 11 (10.5%) were Aspergillus candidus (A. candidus). Furthermore, SPF birds infected with C. psittaci, ORT, H9N2 virus and A. fumigatus conidia exhibited a mortality rate of 40%, while simultaneous co-infection with C. psittaci, ORT and A. fumigatus resulted in a mortality rate of 20%. The avian airsacculitis was manifested in the C. psittaci + ORT/A. fumigatus, C. psittaci + H9N2 + ORT/A. fumigatus and C. psittaci + H9N2/A. fumigatus groups while others had transient respiratory diseases without mortality. Our survey indicates that feed-borne A. fumigatus is prevalent in poultry rations. The combination of C. psittaci, ORT, H9N2 and A. fumigatus conidia contributes to the replication of avian airsacculitis by aggravating the severe damage to the air sacs and lungs of chickens.


Subject(s)
Aspergillosis/complications , Coinfection/mortality , Flavobacteriaceae Infections/complications , Influenza in Birds/complications , Pneumonia/mortality , Poultry Diseases/mortality , Psittacosis/complications , Animals , Aspergillosis/microbiology , Aspergillus fumigatus/isolation & purification , Chickens , Chlamydophila psittaci/isolation & purification , Coinfection/etiology , Coinfection/pathology , Disease Outbreaks , Flavobacteriaceae Infections/microbiology , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza in Birds/virology , Ornithobacterium/isolation & purification , Pneumonia/etiology , Pneumonia/pathology , Poultry Diseases/etiology , Poultry Diseases/pathology , Psittacosis/microbiology
19.
Nat Plants ; 2: 16025, 2016 03 21.
Article in English | MEDLINE | ID: mdl-27249562

ABSTRACT

A hallmark of plants is their adaptability of size and form in response to widely fluctuating environments. The metabolism and redistribution of the phytohormone auxin play pivotal roles in establishing active auxin gradients and resulting cellular differentiation. In Arabidopsis thaliana, cotyledons and leaves synthesize indole-3-acetic acid (IAA) from tryptophan through indole-3-pyruvic acid (3-IPA) in response to vegetational shade. This newly synthesized auxin moves to the hypocotyl where it induces elongation of hypocotyl cells. Here we show that loss of function of VAS2 (IAA-amido synthetase Gretchen Hagen 3 (GH3).17) leads to increases in free IAA at the expense of IAA-Glu (IAA-glutamate) in the hypocotyl epidermis. This active IAA elicits shade- and high temperature-induced hypocotyl elongation largely independently of 3-IPA-mediated IAA biosynthesis in cotyledons. Our results reveal an unexpected capacity of local auxin metabolism to modulate the homeostasis and spatial distribution of free auxin in specialized organs such as hypocotyls in response to shade and high temperature.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/metabolism , Environment , Hypocotyl/growth & development , Hypocotyl/metabolism , Indoleacetic Acids/metabolism , Arabidopsis/genetics , Biological Transport , Biosynthetic Pathways/genetics , Cotyledon/metabolism , Down-Regulation/genetics , Gene Expression Regulation, Plant , Genes, Plant , Glucuronidase/metabolism , Mutation/genetics , Plant Epidermis/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Temperature
20.
Proc Natl Acad Sci U S A ; 113(1): 224-9, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26699514

ABSTRACT

Cryptochrome 1 (CRY1) is a blue light receptor that mediates primarily blue-light inhibition of hypocotyl elongation. Very little is known of the mechanisms by which CRY1 affects growth. Blue light and temperature are two key environmental signals that profoundly affect plant growth and development, but how these two abiotic factors integrate remains largely unknown. Here, we show that blue light represses high temperature-mediated hypocotyl elongation via CRY1. Furthermore, CRY1 interacts directly with PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) in a blue light-dependent manner to repress the transcription activity of PIF4. CRY1 represses auxin biosynthesis in response to elevated temperature through PIF4. Our results indicate that CRY1 signal by modulating PIF4 activity, and that multiple plant photoreceptors [CRY1 and PHYTOCHROME B (PHYB)] and ambient temperature can mediate morphological responses through the same signaling component-PIF4.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cryptochromes/metabolism , Hypocotyl/growth & development , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Hot Temperature , Hypocotyl/genetics , Hypocotyl/radiation effects , Indoleacetic Acids/metabolism , Light , Mixed Function Oxygenases/genetics , Phytochrome B/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...