Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods ; 207: 65-73, 2022 11.
Article in English | MEDLINE | ID: mdl-36122881

ABSTRACT

Abnormal co-occurrence medical visit behavior is a form of medical insurance fraud. Specifically, an organized gang of fraudsters hold multiple medical insurance cards and purchase similar drugs frequently at the same time and the same location in order to siphon off medical insurance funds. Conventional identification methods to identify such behaviors rely mainly on manual auditing, making it difficult to satisfy the needs of identifying the small number of fraudulent behaviors in the large-scale medical data. On the other hand, the existing single-view bi-clustering algorithms only consider the features of the time-location dimension while neglecting the similarities in prescriptions and neglecting the fact that fraudsters may belong to multiple gangs. Therefore, in this paper, we present a multi-view bi-clustering method for identifying abnormal co-occurrence medical visit behavioral patterns, which performs cluster analysis simultaneously on the large-scale, complex and diverse visiting record dimension and prescription dimension to identify bi-clusters with similar time-location features. The proposed method constructs a matrix view of patients and visit records as well as a matrix view of patients and prescriptions, while decomposing multiple data matrices into sparse row and column vectors to obtain a consistent patient population across views. Subsequently the proposed method identifies the corresponding abnormal co-occurrence medical visit behavior and may greatly facilitate the safe operations and the sustainability of medical insurance funds. The experimental results show that our proposed method leads to more efficient and more accurate identifications of abnormal co-occurrence medical visit behavior, demonstrating its high efficiency and effectiveness.


Subject(s)
Algorithms , Humans , Cluster Analysis
2.
Chin J Traumatol ; 21(4): 229-237, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30017544

ABSTRACT

PURPOSE: Microgravity is known to cause endothelium dysfunction in astronauts returning from spaceflight. We aimed to reveal the regulatory mechanism in alterations of human endothelial cells after simulated microgravity (SMG). METHODS: We utilized the rotary cell culture system (RCCS-1) to explore the subsequent effects of SMG on human umbilical vein endothelial cells (HUVECs). RESULTS: SMG-treated HUVECs appeared obvious growth inhibition after return to normal gravity, which might be attributed to a set of responses including alteration of cytoskeleton, decreased cell adhesion capacity and increased apoptosis. Expression levels of mTOR and its downstream Apaf-1 were increased during subsequent culturing after SMG. miR-22 was up-regulated and its target genes SRF and LAMC1 were down-regulated at mRNA levels. LAMC1 siRNAs reduced cell adhesion rate and inhibited stress fiber formation while SRF siRNAs caused apoptosis. CONCLUSION: SMG has the subsequent biological effects on HUVECs, resulting in growth inhibition through mTOR signaling and miR-22-mediated mechanism.


Subject(s)
Human Umbilical Vein Endothelial Cells/physiology , Weightlessness Simulation , Apoptosis , Cell Proliferation , Cells, Cultured , Humans , Laminin/genetics , MicroRNAs/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...