Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Toxics ; 12(7)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39058180

ABSTRACT

In this study, the oral bioavailability of Pb, Cd, and As in three types of traditional Chinese medicines (TCMs) and TCM decoctions were investigated through in vitro PBET digestion/MDKC cell model. Furthermore, a novel cumulative risk assessment model associated with co-exposure of heavy metal(loid)s in TCM and TCM decoction based on bioavailability was developed using hazard index (HI) for rapid screening and target organ toxicity dose modification of the HI (TTD) method for precise assessment. The results revealed that the bioavailability of Pb, Cd, and As in three types of TCM and TCM decoction was 5.32-72.49% and 4.98-51.97%, respectively. After rapid screening of the co-exposure health risks of heavy metal(loid)s by the HI method, cumulative risk assessment results acquired by TTD method based on total metal contents in TCMs indicated that potential health risks associated with the co-exposure of Pb, Cd, and As in Pheretima aspergillum (E. Perrier) and Oldenlandia diffusa (Willd.) Roxb were of concern. However, considering both the factors of decoction and bioavailability, TTD-adjusted HI outcomes for TCMs in this study were <1, indicating acceptable health risks. Collectively, our innovation on cumulative risk assessment of TCM and TCM decoction provides a novel strategy with the main purpose of improving population health.

2.
Food Sci Nutr ; 11(6): 3031-3039, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37324868

ABSTRACT

Mongolian butter and Tude are traditional high-fat dairy products produced in Xilin Gol, China, which have unique chemical and microbiological characteristics. Mongolian Tude is made from Mongolian butter, dreg, and flour. In this study, the traditional manufacturing process of Mongolian butter and Tude was investigated for the first time. Mongolian butter was characterized by high-fat content (99.38 ± 0.63%) and high acidity (77.09 ± 52.91°T), whereas Mongolian Tude was considered a high-fat (21.45 ± 1.23%) and high-protein (8.28 ± 0.65%) dairy product obtained by butter, dreg, and flour. Mongolian butter and Tude were proven to be safe for human consumption in terms of benzopyrene content. In addition, Listeria monocytogenes, Staphylococcus aureus, Salmonella, coliforms, and aflatoxin M1 were not detected in the samples. Bacteria and molds were not isolated from Mongolian butter; in contrast, the total count of bacteria and molds in Mongolian Tude was within the range of 4.5 × 102 to 9.5 × 104 and 0 to 2.2 × 105, respectively. Moreover, Lactococcus (41.55%), Lactobacillus (11.05%), Zygosaccharomyces (40.20%), and Pichia (12.90%) were the predominant bacterial and fungal genera, and Lactobacillus helveticus (15.6%), Lactococcus raffinolactis (9.6%), Streptococcus salivarius (8.5%), Pantoea vagans (6.1%), Bacillus subtilis (4.2%), Kocuria rhizophila (3.5%), Acinetobacter johnsonii (3.5%), Zygosaccharomyces rouxii (46.2%), Pichia fermentans (14.7%), and Dipodascus geotrichum (11.7%) were the predominant species in the microbiota of Mongolian Tude. Thus, it can be stated that the microbiota of food products produced by different small families varied significantly. Collectively, the findings presented herein are the first report of chemical and microbiological characterization of products of geographical origin and highlight the need for standardization of manufacturing procedures of Mongolian butter and Tude in the future.

3.
Chin Med ; 18(1): 73, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328891

ABSTRACT

Marine traditional Chinese medicines (MTCMs) hold a significant place in the rich cultural heritage in China. It plays an irreplaceable role in addressing human diseases and serves as a crucial pillar for the development of China's marine economy. However, the rapid pace of industrialization has raised concerns about the safety of MTCM, particularly in relation to heavy metal pollution. Heavy metal pollution poses a significant threat to the development of MTCM and human health, necessitating the need for detection analysis and risk assessment of heavy metals in MTCM. In this paper, the current research status, pollution situation, detection and analysis technology, removal technology and risk assessment of heavy metals in MTCM are discussed, and the establishment of a pollution detection database and a comprehensive quality and safety supervision system for MTCM is proposed. These measures aim to enhance understanding of heavy metals and harmful elements in MTCM. It is expected to provide a valuable reference for the control of heavy metals and harmful elements in MTCM, as well as the sustainable development and application of MTCM.

4.
Environ Int ; 175: 107933, 2023 05.
Article in English | MEDLINE | ID: mdl-37088008

ABSTRACT

Recent studies on risks assessment of heavy metal(loid) are usually based on their total concentrations. Nevertheless, such an analysis does not assess their real amounts absorbed by human body. To scientifically assess the health risks, in this study medical earthworms were analyzed for relative bioavailability (RBA) of arsenic (As) and lead (Pb) using a multiple gavage mouse model with liver, kidneys, brain, and leg bones as biomarkers for the first time. Metal(loid) bioaccessibility was determined using in vitro physiologically based extraction (PBET) assay. We are the first to develop a novel accumulative health risk assessment strategy by combinational analyzing bioavailability of heavy metal(loid) levels to calculate target organ toxicity dose (TTD) modification of the HI and total cancer risk (TCR), which has capacity to evaluate the health risks of co-exposure of Pb and As in medical earthworms. As a result, As-RBA ranged from 7.2% to 45.1%, and Pb-RBA ranged from 16.1% to 49.8%. Additionally, As and Pb bioaccessibility varied from 6.7% to 48.3% and 7.8% to 52.5%, respectively. Moreover, strong in vivo-in vitro correlations (IVIVCs) were observed between metal-RBA and bioaccessibility, indicating the robustness of the in vitro PBET assay to predict metal-RBA in medical earthworms. The refined accumulative assessment strategy revealed that when adjusted by heavy metal(loid) bioavailability, the TTD modification of HI method typically exhibited an acceptable health risk caused by the co-exposure of Pb and As for cardiovascular, hematological, neurological, and renal system. The TCR levels associated with exposure to Pb and As due to the ingestion of medical earthworms were also acceptable after adjustment by bioavailability. Collectively, our innovation on accumulative risk assessment based on in vivo-in vitro correlation provides a novel approach engaging in assessing the risks due to co-exposure of As and Pb in medical earthworms.


Subject(s)
Arsenic , Metals, Heavy , Oligochaeta , Soil Pollutants , Animals , Mice , Humans , Arsenic/toxicity , Arsenic/analysis , Lead/toxicity , Lead/analysis , Soil Pollutants/toxicity , Soil Pollutants/analysis , Risk Assessment , Biological Availability , Receptors, Antigen, T-Cell , Soil , Metals, Heavy/analysis
5.
Food Sci Nutr ; 11(2): 828-837, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36789043

ABSTRACT

Mongolian cheese is not only a requisite source of food for the nomadic Mongolian but also follows a unique Mongolian dairy artisanal method of production, possessing high nutritional value and long shelf-life. In this study, the ancient technique for the production of Mongolian cheese was investigated. The nutritional value of Mongolian cheese was characterized by its high-protein content (30.13 ± 2.99%) and low-fat content (9.66 ± 3.36%). Lactobacillus, Lactococcus, and Dipodascus were the predominant bacterial and fungal genera, and Lactobacillus helveticus, Lactococcus piscium, and Dipodascus geotrichum were the predominant species in the Mongolian cheese. The microbiota of products from different cheese factories varies significantly. The high-temperature (85°C-90°C) kneading of coagulated curds could eliminate most of the thermosensitive microorganisms for extending the shelf-life of cheese. The indigenous spore-forming microbes, which included yeasts, belonging to Pichia and Candida genera, and molds, belonging to Mucor and Penicillium genera, which originated from the surroundings during the process of cooling, drying, demolding, and vacuum packaging could survive and cause the package to swell and the cheese to grow mold. The investigation of production technology, nutrition, microbiota, and viable microbes related to shelf-life contributes to the protection of traditional technologies, extraction of highlights (nutritional profiles and curd scalding) for merchandise marketing, and standardization of Mongolian cheese production, including culture starters and aseptic technique.

6.
Food Sci Nutr ; 10(7): 2470-2475, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35844925

ABSTRACT

The muscle from Xilingol indigenous sheep breeds are famous in China, and the FecB genotype in this population remains uncharacterized. In this study, SNPs in the FecB locus were investigated by pyrosequencing, and an optimized PCR-RFLP technique was generated to identify SNPs. In addition, an efficient technique for high-throughput identification of SNPs in FecB was optimized using TaqMan real-time PCR and breed-conservative primers and SNP-specific probes. By genotyping the FecB locus in the muscle of Xilingol indigenous sheep breeds using a novel TaqMan real-time PCR assay, our study has generated the groundwork for the authentication of Xilingol mutton based on the specific gene and the prolificacy-oriented breeding of Xilingol sheep using marker-assisted selection strategies in the future.

7.
Food Sci Nutr ; 9(6): 3130-3141, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34136178

ABSTRACT

The authentication and labeling of meat products, concerning origins and species, are key to fair trade and to protect consumer interests in the market. We developed an improved triplex real-time PCR approach to simultaneously identify chicken, duck, and goose DNA in meat, including an endogenous control to avoid false negatives. Our method specifically detected DNA from chicken, duck, and goose, and showed no cross-reaction with DNA extracted from other meat types. The detection limits of chicken, duck, and goose DNA were 0.001-0.00025 ng, 0.0025-0.0001 ng, and 0.001-0.00001 ng, respectively, and we were able to simultaneously identify DNA from two distinct origins using as little as 0.1% of total meat weight. Our newly generated triplex real-time PCR method with endogenous control exhibited high specificity, sensitivity, and efficiency for simultaneous identification of DNA from chicken, duck, and goose in meat.

8.
Food Sci Nutr ; 9(4): 2053-2065, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33841823

ABSTRACT

Natural fermentation of milk is a prerequisite in the production of traditional dairy products and is considered a bioresource of fermentative microorganisms and probiotics. To understand the microbial dynamics during distinct fermentative phases, the roles of different microbes, and the relationship between bacteria and fungi, microbial community dynamics was investigated by culture-dependent and culture-independent approaches. Natural, static fermentation of milk induces the formation of the underlying curds and the superficial sour cream (Zuohe in the Mongolian language). From an overall perspective, viable LAB increased remarkably. Yeast showed an initial increase in their abundance (from 0 hr to 24 hr), which was followed by a decrease, and mold was detected at the later stages of fermentation (after 68 hr). The observed trends in microbiota variation suggest an antagonistic interaction between bacteria (LAB) and fungi (yeast and mold). The beneficial bacterial and fungal genus and species (e.g., Lactococcus, Streptococcus, Leuconostoc, Dipodascus, Lactococcus lacti, Dipodascus australiensis) are gradually increased in concentration, and the potentially detrimental microbial genus and species (e.g., Acinetobacter, Pseudomonas, Fusarium, Aspergillus, Mortierella, Acinetobacter johnsonii, Fusarium solani) decrease during the decline of bacterial and fungi diversity from natural fermentation. The study of microbial community dynamics could make a great contribution to understand the mechanism of natural fermentation of milk and the formation of curds and Zuohe, and to discover the potentially fermentative microbes for industrial starter cultures.

9.
Food Sci Nutr ; 9(3): 1564-1573, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33750994

ABSTRACT

Due to their outstanding nutritional and functional properties, the traditionally fermented dairy products (TFDP) from camel, mare, and cow gained universal praise during their long history of production. In this study, the physicochemical composition and microbial communities of Khoormog, Chigee, and Airag, the TFDP from Xilin Gol in China, were investigated and compared. The physicochemical analysis revealed a higher content of total solid content, protein, and fat in Khoormog (12.5 ± 1.6%; 4.6 ± 0.7%; 4.4 ± 1.3%) compared to Chigee (7.8 ± 1.3%; 2.1 ± 0.2%; 0.8 ± 0.2%) and Airag (8.9 ± 0.7%; 3.7 ± 0.4%; 1.4 ± 0.5%). All three types of TFDP shared 41.2% of bacterial and 25.4% of fungal OTUs, and 95.34% of bacterial and 95.52% of fungal sequence reads. The bacterial and fungal community consisted of four phyla and five genera, and three phyla and seven genera, respectively. Lastly, Lactobacillus predominated in Khoormog, Chigee, and Airag at the genus level, while the dominant fungal genera varied among the samples. In conclusion, the microbial community structures of TFDP from camel, mare, and cow were not significantly different in a definite area (Xilingol region), and Khoormog, Chigee, and Airag bred the common "core microbiota".

10.
Food Sci Nutr ; 8(12): 6467-6476, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33312532

ABSTRACT

In this study, we report a new approach for the detection of ovine and caprine DNA in meat and dairy products using real-time PCR protocol. Our new approach is based on the use of endogenous control and species-specific TaqMan fluorescence probes. With this methodology, we specifically detected ovine and caprine DNA in meat and dairy products, with limits of detection of 0.001 ng and 0.01 ng for fresh and processed ovine meats, respectively, and 0.00025 ng, 0.005 ng, and 0.01 ng for caprine meat, milk, and cheese, respectively. Artificial meat and milk mixtures from sheep and goat were used to validate the protocol. Our results support that TaqMan real-time PCR with endogenous control is an efficient and accurate method to detect DNA from sheep and goat in meat and dairy products.

11.
J Dairy Sci ; 103(11): 9841-9850, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32921473

ABSTRACT

Authentication of dairy and meat products is important to ensure fair competition, consumer benefit, and food safety. The large difference in price between camel and cow milk may be an incentive to adulterate camel dairy products with cow-derived foodstuffs. However, no studies so far have used triplex real-time PCR with an endogenous control to identify camel and cow origins in dairy and meat products. In this study, we developed a triplex real-time PCR assay based on amplification of mitochondrial 12S ribosomal DNA for the authentication of camel-derived dairy and meat products. This method was applied to identify camel and cow DNA in milk, yogurt, cheese, milk powder, milk beverage, meat products, and mixtures with milk and meat. Concentrations as low as 1 to 5% and 0.1% camel milk and meat, respectively, were detected in the mixtures, and 1 to 5% and 0.1% cow milk and meat, respectively, were identified via this approach. The limits of detection were 0.005 to 0.0025 ng, 0.05 to 0.001 ng, 0.001 to 0.0005 ng, and 0.00025 to 0.0001 ng of DNA in camel milk, camel yogurt, commercial camel milk beverage, and camel meat, and from 0.0025 to 0.001 ng, 0.5 to 0.001 ng, 1 to 0.05 ng, 0.01 ng, 0.001 ng, 0.0005 to 0.00025 ng, 0.0005 to 0.00025 ng, and 0.005 ng of DNA from cow milk, yogurt, cheese, acidic whey, milk powder, beef, beef jerky, and beef sausage, respectively. Different dairy and meat samples of camel and cow origins had a range of authentication limits and limits of detection. The designed triplex real-time PCR assay was shown to be a specific, sensitive, and efficient technique for the identification of camel and cow DNA in foodstuffs.


Subject(s)
Camelus , Meat Products/standards , Multiplex Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/veterinary , Animals , Camelus/genetics , Cattle/genetics , Cheese/analysis , DNA/analysis , Dairy Products/analysis , Female , Meat , Meat Products/analysis , Milk/chemistry , Real-Time Polymerase Chain Reaction/methods , Yogurt
12.
Food Sci Nutr ; 8(1): 257-264, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31993151

ABSTRACT

Mare milk originated from female horses, known as mares, to feed their foals during lactation. The health-promoting characteristics of traditionally fermented mare milk (Chigee) are well known for the function of clinic treatment in the traditional Mongolian medicine. This study was conducted to investigate the production technology of Chigee and to evaluate the nutritional and microbiological characteristics of mare milk and Chigee based on 188 samples. The nutritional analysis of mare milk and Chigee indicated that lactose significantly decreased from 6.95 ± 0.45% to 2.82 ± 1.65% and acidity and alcoholic content significantly increased to 136.72 ± 57.88°T and 1.22 ± 0.7%, respectively, after spontaneous fermentation of mare milk. The microbiological analysis of Chigee showed that the total lactic acid bacteria (LAB) count varied from 5.32 to 8.56 log cfu/ml and total yeast count varied from 2.41 to 6.98 log cfu/ml. Moreover, the acidity of Chigee rose with the increase in LAB count within limits, and high acidity (≥178°T) inhibited the growth of coliforms. These findings provide an understanding of traditional production technology, nutrition, and microbiology that is fundamental for establishing the food standard of Chigee in China and will contribute to standardize the fermentation process for the industrial production of Chigee in the future.

13.
J Dairy Sci ; 102(10): 8745-8755, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31400900

ABSTRACT

Mongolian traditionally fermented vrum is known for its functional characteristics, and indigenous microbial flora plays a critical role in its natural fermentation. However, studies of traditionally fermented vrum are still rare. In this study, we investigated the artisanal production of traditionally fermented vrum from Inner Mongolia. In general, its physicochemical composition was characterized by 34.5 ± 8% moisture, 44.9 ± 12.1% fat, 10.6 ± 3.2% protein, and 210 ± 102°T. The total lactic acid bacteria and yeast counts ranged from 50 to 2.8 × 108 cfu/g and from 0 to 1.1 × 106 cfu/g, respectively. We studied bacterial and fungal community structures in 9 fermented vrum; we identified 5 bacterial phyla represented by 11 genera (an average relative abundance >1%) and 8 species (>1%), and 3 fungal phyla represented by 8 genera (>1%) and 8 species (>1%). Relative abundance values showed that Lactococcus and Lactobacillus were the most common bacterial genera, and Dipodascus was the predominant fungal genus. This scientific investigation of the nutritional components, microbial counts, and community profiles in Mongolian traditionally fermented vrum could help to develop future functional biomaterials and probiotics.


Subject(s)
Cultured Milk Products/microbiology , Microbiota , Animals , Bacteria/classification , Bacteria/isolation & purification , Bioreactors , China , Fermentation , Fungi/classification , Fungi/isolation & purification , Lactobacillales , Lactobacillus/classification , Lactobacillus/isolation & purification , Lactococcus , Molecular Typing , Probiotics
14.
J Dairy Sci ; 102(3): 1972-1984, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30639001

ABSTRACT

Koumiss is notable for its nutritional functions, and microorganisms in koumiss determine its versatility. In this study, the bacterial and fungal community structures in traditional koumiss from Inner Mongolia, China, were investigated. Our results demonstrated that 6 bacterial phyla represented by 126 genera and 49 species and 3 fungal phyla represented by 59 genera and 57 species were detected in 11 samples of artisanal koumiss. Among them, Lactobacillus was the predominant genus of bacterium, and Kluyveromyces and Saccharomyces dominated at the fungal genus level. In addition, there were no differences in the bacterial and fungal richness and diversity of koumiss from 3 neighboring administrative divisions in Inner Mongolia, and the bacterial and fungal community structures (the varieties and relative abundance of bacterial and fungal genera and species) were clearly distinct in individual samples. This study provides a comprehensive understanding of the bacterial and fungal population profiles and the predominant genus and species, which would be beneficial for screening, isolation, and culture of potential probiotics to simulate traditional fermentation of koumiss for industrial and standardized production in the future.


Subject(s)
Bacteria/isolation & purification , Fungi/isolation & purification , Koumiss/microbiology , Animals , Bacteria/classification , China , Fermentation , Fungi/classification , Horses , Kluyveromyces/isolation & purification , Lactobacillus , Mycobiome , Probiotics , Saccharomyces/isolation & purification
15.
J Dairy Sci ; 101(8): 6776-6786, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29885894

ABSTRACT

Koumiss is a popular dairy product in many lands, traditionally prepared from mare milk with spontaneous fermentation. Mare milk and its fermented derivates are more expensive than cow milk and its fermented derivates, and the possibility exists for producers and dealers to adulterate equine products with bovine items. In this work, we described the development of a triplex real-time PCR based on species-specific TaqMan probes for identification of bovine and equine DNA in milks and dairy products. In addition, a novel designed endogenous control was simultaneously amplified to eliminate possible false negatives. With this methodology, bovine and equine DNA were specifically identified by employing developed primers and probes. The limits of detection of this method were 0.001 ng for cow milk, yogurt, and mare milk, and 0.005 ng for sour soup and koumiss, respectively. In addition, the triplex real-time PCR assay for authentication of animal-derived products was effectively validated using binary DNA and milk mixtures, exhibiting well in terms of specificity, sensitivity, and reproducibility. In short, the triplex PCR assay was verified to be a time-saving and money-saving technique for the identification of bovine and equine DNA in milks and dairy products.


Subject(s)
DNA/analysis , Dairy Products/analysis , Milk/chemistry , Real-Time Polymerase Chain Reaction/veterinary , Animals , Cattle , Female , Horses , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , Yogurt
SELECTION OF CITATIONS
SEARCH DETAIL
...