Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
1.
J Asian Nat Prod Res ; : 1-17, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829012

ABSTRACT

Spirotryprostatins are representative members of medicinally interesting bioactive molecules of the spirooxindole natural products. In this communication, we present a novel enantioselective total synthesis of the spirooxindole alkaloid dihydrospirotryprostatin B. The synthesis takes advantage of copper-catalyzed tandem reaction of o-iodoanilide chiral sulfinamide derivatives with alkynone to rapidly construct the key quaternary carbon stereocenter of the natural product dihydrospirotryprostatin B.

2.
Am J Clin Nutr ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825185

ABSTRACT

BACKGROUND: Sarcopenia is known as a decline in skeletal muscle quality and function that is associated with age. Sarcopenia is linked to diverse health problems, including endocrine-related diseases. Environmental chemicals (ECs), a broad class of chemicals released from industry, may influence muscle quality decline. OBJECTIVE: In our work, we aim to simultaneously elucidate the associations between muscle quality decline and diverse EC exposures based on the data from the 2011-2012 and 2013-2014 survey cycles in the National Health and Nutrition Examination Survey (NHANES) project using machine learning models. METHODS: Six machine learning models were trained based on the EC and non-EC exposures from NHANES to distinguish low from normal muscle quality index status. Different machine learning metrics were evaluated for these models. The SHAP (SHapley Additive exPlanations) approach was used to provide explainability for machine learning models. RESULTS: Random Forest (RF) performed best on the independent testing dataset. Based on the testing dataset, ECs can independently predict the binary muscle quality status with good performance by RF (Area Under the Receiver Operating Characteristic Curve (AUROC) = 0.793, Area Under the Precision-Recall Curve (AUPRC) = 0.808). The SHAP ranked the importance of ECs for the RF model. As a result, several metals and chemicals in urine, including 3-phenoxybenzoic acid and cobalt, were more associated with the muscle quality decline. CONCLUSIONS: Altogether, our analyses suggest that ECs can independently predict muscle quality decline with a good performance by RF, and the SHAP-identified ECs can be closely related to muscle quality decline and sarcopenia. Our analyses may provide valuable insights into environmental chemicals that may be the important basis of sarcopenia and endocrine-related diseases in U.S.

3.
Toxicol Appl Pharmacol ; 488: 116980, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823456

ABSTRACT

Multiple sclerosis (MS) is a class of autoimmune diseases mainly caused by the immune system attacking the myelin sheath of the axons in the nervous system. Although the pathogenesis of MS is complex, studies have shown that dendritic cells (DCs) play a vital role in the pathogenesis of MS. Quercetin (QU) has a unique advantage in clinical application, especially for treating autoimmune diseases. However, the mechanism of QU in the treatment of experimental autoimmune encephalomyelitis (EAE) remains unclear. In this study, we explore the potential role of QU in EAE. Finally, we find that QU has anti-inflammatory activities and neural protective effects in EAE. The experimental results suggest that the cellular basis for QU's function is to inhibit the activation of DCs while modulating the Th17 cell differentiation in the co-culture system. Further, QU may target STAT4 to inhibit its activation in DCs. This work will be of great significance for the future development and utilization of QU.

4.
J Nanobiotechnology ; 22(1): 311, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831332

ABSTRACT

Efficient thrombolysis in time is crucial for prognostic improvement of patients with acute arterial thromboembolic disease, while limitations and complications still exist in conventional thrombolytic treatment methods. Herein, our study sought to investigate a novel dual-mode strategy that integrated ultrasound (US) and near-infrared light (NIR) with establishment of hollow mesoporous silica nanoprobe (HMSN) which contains Arginine-glycine-aspartate (RGD) peptide (thrombus targeting), perfluoropentane (PFP) (thrombolysis with phase-change and stable cavitation) and indocyanine green (ICG) (thrombolysis with photothermal conversion). HMSN is used as the carrier, the surface is coupled with targeted RGD to achieve high targeting and permeability of thrombus, PFP and ICG are loaded to achieve the collaborative diagnosis and treatment of thrombus by US and NIR, so as to provide a new strategy for the integration of diagnosis and treatment of arterial thrombus. From the in vitro and in vivo evaluation, RGD/ICG/PFP@HMSN can aggregate and penetrate at the site of thrombus, and finally establish the dual-mode directional development and thrombolytic treatment under the synergistic effect of US and NIR, providing strong technical support for the accurate diagnosis and treatment of arterial thrombosis.


Subject(s)
Indocyanine Green , Infrared Rays , Oligopeptides , Thrombolytic Therapy , Thrombosis , Animals , Thrombolytic Therapy/methods , Oligopeptides/chemistry , Indocyanine Green/chemistry , Thrombosis/diagnostic imaging , Thrombosis/drug therapy , Nanoparticles/chemistry , Fluorocarbons/chemistry , Silicon Dioxide/chemistry , Humans , Mice , Male , Rabbits , Ultrasonography/methods , Pentanes
5.
Fa Yi Xue Za Zhi ; 40(2): 135-142, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38847027

ABSTRACT

OBJECTIVES: To investigate the application value of combining the Demirjian's method with machine learning algorithms for dental age estimation in northern Chinese Han children and adolescents. METHODS: Oral panoramic images of 10 256 Han individuals aged 5 to 24 years in northern China were collected. The development of eight permanent teeth in the left mandibular was classified into different stages using the Demirjian's method. Various machine learning algorithms, including support vector regression (SVR), gradient boosting regression (GBR), linear regression (LR), random forest regression (RFR), and decision tree regression (DTR) were employed. Age estimation models were constructed based on total, female, and male samples respectively using these algorithms. The fitting performance of different machine learning algorithms in these three groups was evaluated. RESULTS: SVR demonstrated superior estimation efficiency among all machine learning models in both total and female samples, while GBR showed the best performance in male samples. The mean absolute error (MAE) of the optimal age estimation model was 1.246 3, 1.281 8 and 1.153 8 years in the total, female and male samples, respectively. The optimal age estimation model exhibited varying levels of accuracy across different age ranges, which provided relatively accurate age estimations in individuals under 18 years old. CONCLUSIONS: The machine learning model developed in this study exhibits good age estimation efficiency in northern Chinese Han children and adolescents. However, its performance is not ideal when applied to adult population. To improve the accuracy in age estimation, the other variables can be considered.


Subject(s)
Age Determination by Teeth , Algorithms , Asian People , Machine Learning , Radiography, Panoramic , Humans , Adolescent , Child , Male , Female , Age Determination by Teeth/methods , Radiography, Panoramic/methods , China/ethnology , Child, Preschool , Young Adult , Mandible , Tooth/diagnostic imaging , Tooth/growth & development , Support Vector Machine , Decision Trees , Ethnicity , East Asian People
6.
Int J Legal Med ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760564

ABSTRACT

BACKGROUND & OBJECTIVE: Sex estimation is a critical aspect of forensic expertise. Some special anatomical structures, such as the maxillary sinus, can still maintain integrity in harsh environmental conditions and may be served as a basis for sex estimation. Due to the complex nature of sex estimation, several studies have been conducted using different machine learning algorithms to improve the accuracy of sex prediction from anatomical measurements. MATERIAL & METHODS: In this study, linear data of the maxillary sinus in the population of northwest China by using Cone-Beam Computed Tomography (CBCT) were collected and utilized to develop logistic, K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and random forest (RF) models for sex estimation with R 4.3.1. CBCT images from 477 samples of Han population (75 males and 81 females, aged 5-17 years; 162 males and 159 females, aged 18-72) were used to establish and verify the model. Length (MSL), width (MSW), height (MSH) of both the left and right maxillary sinuses and distance of lateral wall between two maxillary sinuses (distance) were measured. 80% of the data were randomly picked as the training set and others were testing set. Besides, these samples were grouped by age bracket and fitted models as an attempt. RESULTS: Overall, the accuracy of the sex estimation for individuals over 18 years old on the testing set was 77.78%, with a slightly higher accuracy rate for males at 78.12% compared to females at 77.42%. However, accuracy of sex estimation for individuals under 18 was challenging. In comparison to logistic, KNN and SVM, RF exhibited higher accuracy rates. Moreover, incorporating age as a variable improved the accuracy of sex estimation, particularly in the 18-27 age group, where the accuracy rate increased to 88.46%. Meanwhile, all variables showed a linear correlation with age. CONCLUSION: The linear measurements of the maxillary sinus could be a valuable tool for sex estimation in individuals aged 18 and over. A robust RF model has been developed for sex estimation within the Han population residing in the northwestern region of China. The accuracy of sex estimation could be higher when age is used as a predictive variable.

7.
Food Res Int ; 187: 114373, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763649

ABSTRACT

Effect of complexation of three medium-chain fatty acids (octanoic, decylic and lauric acid, OA, DA and LA, respectively) on structural characteristics, physicochemical properties and digestion behaviors of cassava starch (CS) was investigated. Current study indicated that LA was more easily to combine with CS (complex index 88.9%), followed by DA (80.9%), which was also consistent with their corresponding complexed lipids content. Following the investigation of morphology, short-range ordered structure, helical structure, crystalline/amorphous region and fractal dimension of the various complexes, all cassava starch-fatty acids complexes (CS-FAs) were characterized with a flaked morphology rather than a round morphology in native starch (control CS). X-ray diffraction demonstrated that all CS-FAs had a V-type crystalline structure, and nuclear magnetic resonance spectroscopy confirmed that the complexes made from different fatty acids displayed similar V6 or V7 type polymorphs. Interestingly, small-angle X-ray scattering analysis revealed that α value became greater following increased carbon chain length of fatty acids, indicating the formation of a more ordered fractal structure in the aggregates. Changes in rheological parameters G' and G'' indicated that starch complexed with fatty acids was more likely to form a gel network, but difference among three CS-FAs complexes was significant, which might be contributed to their corresponding hydrophobicity and hydrophilicity raised from individual fatty acids. Importantly, digestion indicated that CS-LA complexes had the lowest hydrolysis degree, followed by the greatest RS content, indicating the importance of chain length of fatty acids for manipulating the fine structure and functionality of the complexes.


Subject(s)
Digestion , Fatty Acids , Lauric Acids , Manihot , Starch , X-Ray Diffraction , Manihot/chemistry , Starch/chemistry , Lauric Acids/chemistry , Fatty Acids/chemistry , Decanoic Acids/chemistry , Rheology , Caprylates/chemistry , Magnetic Resonance Spectroscopy
9.
Plant Physiol Biochem ; 211: 108684, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710113

ABSTRACT

Abscisic acid-, stress-, and ripening-induced (ASR) proteins in plants play a significant role in plant response to diverse abiotic stresses. However, the functions of ASR genes in maize remain unclear. In the present study, we identified a novel drought-induced ASR gene in maize (ZmASR1) and functionally characterized its role in mediating drought tolerance. The transcription of ZmASR1 was upregulated under drought stress and abscisic acid (ABA) treatment, and the ZmASR1 protein was observed to exhibit nuclear and cytoplasmic localization. Moreover, ZmASR1 knockout lines generated with the CRISPR-Cas9 system showed lower ROS accumulation, higher ABA content, and a higher degree of stomatal closure than wild-type plants, leading to higher drought tolerance. Transcriptome sequencing data indicated that the significantly differentially expressed genes in the drought treatment group were mainly enriched in ABA signal transduction, antioxidant defense, and photosynthetic pathway. Taken together, the findings suggest that ZmASR1 negatively regulates drought tolerance and represents a candidate gene for genetic manipulation of drought resistance in maize.


Subject(s)
Abscisic Acid , Droughts , Gene Expression Regulation, Plant , Plant Proteins , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Abscisic Acid/metabolism , Stress, Physiological/genetics , Reactive Oxygen Species/metabolism
10.
Infect Drug Resist ; 17: 1911-1918, 2024.
Article in English | MEDLINE | ID: mdl-38766680

ABSTRACT

The liver receives blood from both the hepatic artery and portal vein. Hepatic infarction is rare in clinical practice as both the hepatic artery and portal vein can supply blood to the liver. Here, we reported a case of a 75-year-old man who underwent radical laparoscopic surgery for rectal cancer and subsequently developed hepatic infarction. The patient experienced severe infection, as well as circulatory and respiratory failure on the third day after surgery. The patient presented with high fever, chest tightness, shortness of breath, decreased blood oxygen saturation and blood pressure. The leukocyte count decreased from 8.10 × 10^9/L to 1.75 × 10^9/L. Procalcitonin (PCT) levels increased from 1.02 ng/mL to 67.14 ng/mL, and eventually reaching levels over 200 ng/mL. Enhanced abdominal computed tomography (CT) confirmed the presence of hepatic infarction, but no thrombosis was observed in the hepatic artery or portal vein. Metagenomic next-generation sequencing (mNGS) identified hypervirulent Klebsiella pneumoniae (hvKp) in the patient's blood and ascites, one day earlier than the detection results using traditional culture methods. The patient was diagnosed with hepatic infarction combined with septic shock caused by hvKp. This case emphasizes that in the high-risk group of thrombosis, infection can trigger exacerbated hepatic infarction events, particularly in cases after surgical procedures. For severely ill patients with infectious diseases who are admitted to the ICU with worsening symptoms, it is important to collect appropriate samples and send them for pathogen detection using mNGS in a timely manner. This may aid in early intervention and improve clinical outcomes.

11.
Water Res ; 256: 121611, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38640567

ABSTRACT

Natural small molecular organic matter (NSOM), ubiquitous in natural waters and distinct from humic acid or fulvic acid, is a special type of dissolved organic matter (DOM) which is characterized as strong photosensitivity and simple molecular structure. However, little study had been directed on the role of NSOM in eliminating emerging contaminants in advanced reduction process (ARP). This study took three small molecular isomeric organic acids (p-hydroxybenzoic acid, pHBA; salicylic acid, SA; m-hydroxybenzoic acid, mHBA) as the representative substances of NSOM to explore these mechanisms on promoting Ribavirin (RBV, an anti COVID-19 medicine) degradation in ultraviolet activated sulfite (UV/Sulfite) process. The results demonstrated that the observed degradation rate constant of RBV (kobs-RBV) was 7.56 × 10-6 s-1 in UV/Sulfite process, indicating that hydrated electron (eaq-) from UV/Sulfite process could not effectively degrade RBV, while it increased by 178 and 38 times when pHBA and SA were introduced into UV/Sulfite process respectively, suggesting that pHBA and SA strongly promoted RBV degradation while mHBA had no promotion on RBV abatement in UV/Sulfite process. Transient absorption spectra and reactive intermediates scavenging experiment indicated that the triplet excited state pHBA and SA (3pHBA* and 3SA*) contributed to the degradation of RBV through non-radical process. Notably, eaq- played the role of key initiator in transforming pHBA and SA into their triplet states. The difference of kobs-RBV in UV/Sulfite/pHBA and UV/Sulfite/SA process was attributed to different generation pathways of 3pHBA* and 3SA* (high molar absorptivity at the wavelength of 254 nm and photosensitive cycle, respectively) and their second order rate constants towards RBV (kRBV-3pHBA* = 8.60 × 108 M-1 s-1 and kRBV-3SA* = 6.81 × 107 M-1 s-1). mHBA could not degrade RBV for its lack of intramolecular hydrogen bond and low molar absorptivity at 254 nm to abundantly transform into its triplet state. kobs-RBV increased as pH increased from 5.0 to 11.0 in UV/Sulfite/SA process, due to the high yield of eaq- in alkaline condition which promoted the generation of 3SA* and the stable of the absorbance of SA at 254 nm. By contrast, kobs-RBV underwent a process of first increasing and then decreasing in UV/Sulfite/pHBA process as the increase of pH, and its highest value achieved in a neutral condition. This lied in the exposure of eaq- increased as the increase of pH which promoted the generation of 3pHBA*, while the molar absorptivity of pHBA at 254 nm decreased as the increase of pH in an alkaline condition which inhibited the yield of 3pHBA*. The RBV degradation pathways and products toxicity assessment indicated that UV/Sulfite/pHBA had better detoxification performance on RBV than UV/Sulfite/SA process. This study disclosed a novel mechanism of emerging contaminants abatement through non-radical process in NSOM mediated ARP, and provide a wide insight into positive profile of DOM in water treatment process, instead of only taking DOM as a quencher of reactive intermediates.


Subject(s)
Antiviral Agents , Antiviral Agents/chemistry , Ultraviolet Rays , Sulfites/chemistry
12.
Int J Nanomedicine ; 19: 2793-2806, 2024.
Article in English | MEDLINE | ID: mdl-38525011

ABSTRACT

Background: Prostate cancer (PCa) poses a significant global health threaten. Immunotherapy has emerged as a novel strategy to augment the inhibition of tumor proliferation. However, the sole use of anti-PD-L1 Ab for PCa has not yielded improvements, mirroring outcomes observed in other tumor types. Methods: This study employed the thin film hydration method to develop lipid nanobubbles (NBs) encapsulating chlorin e6 (Ce6) and anti-PD-L1 Ab (Ce6@aPD-L1 NBs). Our experimental approach included cellular assays and mouse immunization, providing a comprehensive evaluation of Ce6@aPD-L1 NBs' impact. Results: The Ce6@aPD-L1 NBs effectively induced reactive oxygen species generation, leading to tumor cells death. In mice, they demonstrated a remarkable enhancement of immune responses compared to control groups. These immune responses encompassed immunogenic cell death induced by sonodynamic therapy and PD-1/PD-L1 blockade, activating dendritic cells maturation and effectively stimulating CD8+T cells. Conclusion: Ce6@aPD-L1 NBs facilitate tumor-targeted delivery, activating anti-tumor effects through direct sonodynamic therapy action and immune system reactivation in the tumor microenvironment. Ce6@aPD-L1 NBs exhibit substantial potential for achieving synergistic anti-cancer effects in PCa.


Subject(s)
Photochemotherapy , Prostatic Neoplasms , Ultrasonic Therapy , Humans , Male , Mice , Animals , Ultrasonic Therapy/methods , Ultrasonography , Prostatic Neoplasms/drug therapy , Photochemotherapy/methods , Immunotherapy , Cell Line, Tumor , Tumor Microenvironment
13.
Eur J Pediatr ; 183(5): 2353-2363, 2024 May.
Article in English | MEDLINE | ID: mdl-38429545

ABSTRACT

There are increasing reports of neurological manifestation in children with coronavirus disease 2019 (COVID-19). However, the frequency and clinical outcomes of in hospitalized children infected with the Omicron variant are unknown. The aim of this study was to describe the clinical characteristics, neurological manifestations, and risk factor associated with poor prognosis of hospitalized children suffering from COVID-19 due to the Omicron variant. Participants included children older than 28 days and younger than 18 years. Patients were recruited from December 10, 2022 through January 5, 2023. They were followed up for 30 days. A total of 509 pediatric patients hospitalized with the Omicron variant infection were recruited into the study. Among them, 167 (32.81%) patients had neurological manifestations. The most common manifestations were febrile convulsions (n = 90, 53.89%), viral encephalitis (n = 34, 20.36%), epilepsy (n = 23, 13.77%), hypoxic-ischemic encephalopathy (n = 9, 5.39%), and acute necrotizing encephalopathy (n = 6, 3.59%). At discharge, 92.81% of patients had a good prognosis according to the Glasgow Outcome Scale (scores ≥ 4). However, 7.19% had a poor prognosis. Eight patients died during the follow-up period with a cumulative 30-day mortality rate of 4.8% (95% confidence interval (CI) 1.5-8.1). Multivariate analysis revealed that albumin (odds ratio 0.711, 95% CI 0.556-0.910) and creatine kinase MB (CK-MB) levels (odds ratio 1.033, 95% CI 1.004-1.063) were independent risk factors of poor prognosis due to neurological manifestations. The area under the curve for the prediction of poor prognosis with albumin and CK-MB was 0.915 (95%CI 0.799-1.000), indicating that these factors can accurately predict a poor prognosis.          Conclusion: In this study, 32.8% of hospitalized children suffering from COVID-19 due to the Omicron variant infection experienced neurological manifestations. Baseline albumin and CK-MB levels could accurately predict poor prognosis in this patient population. What is Known: • Neurological injury has been reported in SARS-CoV-2 infection; compared with other strains, the Omicron strain is more likely to cause neurological manifestations in adults. • Neurologic injury in adults such as cerebral hemorrhage and epilepsy has been reported in patients with Omicron variant infection. What is New: • One-third hospitalized children with Omicron infection experience neurological manifestations, including central nervous system manifestations and peripheral nervous system manifestations. • Albumin and CK-MB combined can accurately predict poor prognosis (AUC 0.915), and the 30-day mortality rate of children with Omicron variant infection and neurological manifestations was 4.8%.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/complications , COVID-19/diagnosis , Male , Female , Child , Prognosis , Risk Factors , Child, Preschool , Infant , Adolescent , Nervous System Diseases/etiology , Nervous System Diseases/virology , Hospitalization/statistics & numerical data , Infant, Newborn , China/epidemiology , Child, Hospitalized/statistics & numerical data
14.
Transl Cancer Res ; 13(2): 1166-1187, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38482437

ABSTRACT

Background and Objective: The cancer-immunity cycle (CIC) is defined as a series of progressive events that cause an anticancer immune response leading to the killing of the cancer cell. The concept of CIC has important guiding significance for the clinical and basic tumor immunotherapy research. As one of the methods of traditional Chinese medicine (TCM), Chinese herbal medicine (CHM) has shown unique advantages in multitarget and multipathway immune regulation. However, the tumor immune circulation targeted by CHM is generally unclear at present. To provide reference for future clinical and basic research, we systematically reviewed the existing literature on CHM (including CHM monomers, CHM compounds, and CHM patent medicines) and the mechanisms related to its efficacy. Methods: We searched the PubMed and China National Knowledge Infrastructure (CNKI) databases for relevant Chinese-language and English-language literature published from January 1988 to October 2022. The literature was screened manually at three levels: title, abstract, and full text, to identify articles related to CHM and their mechanism of regulating tumor immunity. Key Content and Findings: By further classifying the CIC, it was confirmed that CHM can regulate the activation of dendritic cells (DCs) and macrophages and promote the presentation of tumor antigens. Meanwhile, CHM can also reverse tumor-immune escape by enhancing T-cell proliferation and infiltration. In addition, CHM can also enhance the antitumor ability of the body by regulating the killing process of tumor cells. Conclusions: The theory of a CIC is of guiding significance to regulating tumor immunity via CHM.

15.
PLoS Pathog ; 20(3): e1012110, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38498560

ABSTRACT

The interaction between influenza A virus (IAV) and host proteins is an important process that greatly influences viral replication and pathogenicity. PB2 protein is a subunit of viral ribonucleoprotein (vRNP) complex playing distinct roles in viral transcription and replication. BAG6 (BCL2-associated athanogene 6) as a multifunctional host protein participates in physiological and pathological processes. Here, we identify BAG6 as a new restriction factor for IAV replication through targeting PB2. For both avian and human influenza viruses, overexpression of BAG6 reduced viral protein expression and virus titers, whereas deletion of BAG6 significantly enhanced virus replication. Moreover, BAG6-knockdown mice developed more severe clinical symptoms and higher viral loads upon IAV infection. Mechanistically, BAG6 restricted IAV transcription and replication by inhibiting the activity of viral RNA-dependent RNA polymerase (RdRp). The co-immunoprecipitation assays showed BAG6 specifically interacted with the N-terminus of PB2 and competed with PB1 for RdRp complex assembly. The ubiquitination assay indicated that BAG6 promoted PB2 ubiquitination at K189 residue and targeted PB2 for K48-linked ubiquitination degradation. The antiviral effect of BAG6 necessitated its N-terminal region containing a ubiquitin-like (UBL) domain (17-92aa) and a PB2-binding domain (124-186aa), which are synergistically responsible for viral polymerase subunit PB2 degradation and perturbing RdRp complex assembly. These findings unravel a novel antiviral mechanism via the interaction of viral PB2 and host protein BAG6 during avian or human influenza virus infection and highlight a potential application of BAG6 for antiviral drug development.


Subject(s)
Influenza A virus , Influenza, Human , Animals , Humans , Mice , Antiviral Agents/metabolism , Influenza A virus/genetics , Molecular Chaperones/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/genetics
16.
Med Biol Eng Comput ; 62(6): 1655-1672, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38324109

ABSTRACT

Electroencephalogram (EEG) motor imagery (MI) classification refers to the use of EEG signals to identify and classify subjects' motor imagery activities; this task has received increasing attention with the development of brain-computer interfaces (BCIs). However, the collection of EEG data is usually time-consuming and labor-intensive, which makes it difficult to obtain sufficient labeled data from the new subject to train a new model. Moreover, the EEG signals of different individuals exhibit significant differences, leading to a significant drop in the performance of a model trained on the existing subjects when directly classifying EEG signals acquired from new subjects. Therefore, it is crucial to make full use of the EEG data of the existing subjects and the unlabeled EEG data of the new target subject to improve the MI classification performance achieved for the target subject. This research study proposes a semi-supervised multi-source transfer (SSMT) learning model to address the above problems; the model learns informative and domain-invariant representations to address cross-subject MI-EEG classification tasks. In particular, a dynamic transferred weighting schema is presented to obtain the final predictions by integrating the weighted features derived from multi-source domains. The average accuracies achieved on two publicly available EEG datasets reach 83.57 % and 85.09 % , respectively, validating the effectiveness of the SSMT process. The SSMT process reveals the importance of informative and domain-invariant representations in MI classification tasks, as they make full use of the domain-invariant information acquired from each subject.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Imagination , Humans , Electroencephalography/methods , Imagination/physiology , Signal Processing, Computer-Assisted , Algorithms , Supervised Machine Learning
17.
Infect Agent Cancer ; 19(1): 4, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378712

ABSTRACT

OBJECTIVES: Our aim was to assess the trend in gynaecologic cancer (GC) mortality in the period from 2010 to 2022 in the United States, with focus on the impact of the pandemic on increased deaths. METHODS: GC mortality data were extracted from the Center for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research (CDC WONDER) platform. We analysed mortality trends and evaluated observed vs. predicted mortality for the period from 2020 to 2022 with joinpoint regression and prediction modelling analyses. RESULTS: A total of 334,382 deaths among adults aged 25 years and older with gynaecologic cancer were documented from 2010 to 2022. The overall age-standardised mortality rate (ASMR, per 100,000 persons) for ovarian cancer-related death decreased gradually from 7.189 in 2010 to 5.517 in 2019, yielding an APC (annual percentage change) of -2.8%. However, the decrease in ovarian cancer-related mortality slowed down by more than 4-fold during the pandemic. Cervical cancer -related mortality decreased slightly prior to the pandemic and increased during the pandemic with an APC of 0.6%, resulting in excess mortality of 4.92%, 9.73% and 2.03% in 2020, 2021 and 2022, respectively. For uterine corpus cancer, the ASMR increased from 1.905 in 2010 to 2.787 in 2019, and increased sharply to 3.079 in 2021 and 3.211 in 2022. The ASMR rose steadily between 2013 and 2022, yielding an APC of 6.9%. CONCLUSIONS: Overall, we found that GC-related mortality increased during the COVID-19 pandemic, and this increase was not specific to age, race, or ethnicity.

18.
Viruses ; 16(2)2024 01 30.
Article in English | MEDLINE | ID: mdl-38399984

ABSTRACT

The interaction between migratory birds and domestic waterfowl facilitates viral co-infections, leading to viral reassortment and the emergence of novel viruses. In 2022, samples were collected from duck farms around Poyang Lake in Jiangxi Province, China, which is located within the East Asia-Australasia flyway. Three strains of H4N6 avian influenza virus (AIV) were isolated. Genetic and phylogenetic analyses showed that the isolated H4N6 avian influenza viruses (AIVs) belonged to new genotypes, G23 and G24. All isolated strains demonstrated dual receptor binding properties. Additionally, the isolated strains were able to replicate efficiently not only in avian cells but also in mammalian cells. Furthermore, the H4N6 AIV isolates could infect chickens, with viral replication detected in the lungs and extrapulmonary organs, and could transmit within chicken flocks through contact, with viral shedding detected only in oropharyngeal swabs from chickens in the contact group. Notably, the H4N6 AIV could infect mice without prior adaptation and replicate in the lungs with high viral titers, suggesting that it is a potential threat to humans. In conclusion, this study provides valuable insight into the characteristics of H4N6 strains currently circulating in China.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Mice , Chickens , China , Ducks , Mammals , Phylogeny
19.
Nano Lett ; 24(7): 2264-2272, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38324803

ABSTRACT

Developing general methods to fabricate water-dispersible and biocompatible fluorescent probes will promote different biological visualization applications. Herein, we report a metal-facilitated method to fabricate ultrabright green-emissive nanodots via the one-step solvothermal treatment of rose bengal, ethanol, and various metal ions. These metal-doped nanodots show good water dispersity, ultrahigh photoluminescence quantum yields (PLQYs) (e.g., the PLQY of Fe-doped nanodots (FeNDs) was ∼97%), and low phototoxicity. Owing to the coordination effect of metal ions, the FeNDs realize glutathione detection with outstanding properties. Benefiting from the high endoplasmic reticulum (ER) affinity of the chloride group, the FeNDs can act as an ER tracker with long ER imaging capacity (FeNDs: >24 h; commercial ER tracker: ∼1 h) and superb photostability and can achieve tissue visualization in living Caenorhabditis elegans. The metal-doped nanodots represent a general nanodot preparation method and may shed new light on diverse biological visualization uses.


Subject(s)
Quantum Dots , Carbon , Fluorescent Dyes , Ions , Water
20.
BMC Oral Health ; 24(1): 253, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374033

ABSTRACT

BACKGROUND: Sex estimate is a key stage in forensic science for identifying individuals. Some anatomical structures may be useful for sex estimation since they retain their integrity even after highly severe events. However, few studies are focusing on the Chinese population. Some researchers used teeth for sex estimation, but comparison with maxillary sinus were lack. As a result, the objective of this research is to develop a sex estimation formula for the northwestern Chinese population by the volume of the maxillary sinus and compare with the accuracy of sex estimation based on teeth through cone-beam computed tomography (CBCT). METHODS: CBCT images from 349 samples were used to establish and verify the formula. The volume of both the left and right maxillary sinuses was measured and examined for appropriate formula coefficients. To create the formula, we randomly picked 80% of the data as the training set and 20% of the samples as the testing set. Another set of samples, including 20 males and 20 females, were used to compare the accuracy of maxillary sinuses and teeth. RESULTS: Overall, sex estimation accuracy by volume of the left maxillary sinus can reach 78.57%, while by the volume of the right maxillary sinus can reach 74.29%. The accuracy for females, which can reach 91.43% using the left maxillary sinus, was significantly higher than that for males, which was 65.71%. The result also shows that maxillary sinus volume was higher in males. The comparison with the available results using measurements of teeth for sex estimation performed by our group showed that the accuracy of sex estimation using canines volume was higher than the one using maxillary sinus volume, the accuracies based on mesiodistal diameter of canine and first molar were the same or lower than the volume of maxillary sinus. CONCLUSIONS: The study demonstrates that measurement of maxillary sinus volume based on CBCT scans was an available and alternative method for sex estimation. And we established a method to accurately assess the sex of the northwest Chinese population. The comparison with the results of teeth measurements made the conclusion more reliable.


Subject(s)
Cone-Beam Computed Tomography , Maxillary Sinus , Male , Female , Humans , Maxillary Sinus/diagnostic imaging , Cone-Beam Computed Tomography/methods , Molar , Maxilla/diagnostic imaging , China
SELECTION OF CITATIONS
SEARCH DETAIL
...