Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (184)2022 06 17.
Article in English | MEDLINE | ID: mdl-35781278

ABSTRACT

Access to low-burden molecular diagnostics that can be deployed into the community for testing is increasingly important and has meaningful wider implications for the well-being of societies and economic stability. Recent years have seen several new isothermal diagnostic modalities emerge to meet the need for rapid, low-cost molecular diagnostics. We have contributed to this effort through the development and patient validation of toehold switch-based diagnostics, including diagnostics for the mosquito-borne Zika and chikungunya viruses, which provided performance comparable to gold-standard reverse transcription-quantitative polymerase chain reaction (RT-qPCR) based assays. These diagnostics are inexpensive to develop and manufacture, and they have the potential to provide diagnostic capacity to low-resource environments. Here the protocol provides all the steps necessary for the development of a switch-based assay for Zika virus detection. The article takes readers through the stepwise diagnostic development process. First, genomic sequences of Zika virus serve as inputs for the computational design of candidate switches using open-source software. Next, the assembly of the sensors for empirical screening with synthetic RNA sequences and optimization of diagnostic sensitivity is shown. Once complete, validation is performed with patient samples in parallel with RT-qPCR, and a purpose-built optical reader, PLUM. This work provides a technical roadmap to researchers for the development of low-cost toehold switch-based sensors for applications in human health, agriculture, and environmental monitoring.


Subject(s)
Chikungunya virus , Zika Virus Infection , Zika Virus , Animals , Humans , RNA, Viral/analysis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Zika Virus/genetics , Zika Virus Infection/diagnosis
2.
J Fungi (Basel) ; 8(6)2022 May 29.
Article in English | MEDLINE | ID: mdl-35736064

ABSTRACT

In order to reveal the genetic variation signals of Auricularia heimuer that have occurred during their domestication and to find potential functional gene families, we constructed a monokaryotic pan-genome of A. heimuer representing four cultivated strains and four wild strains. The pan-genome contained 14,089 gene families, of which 67.56% were core gene families and 31.88% were dispensable gene families. We screened substrate utilization-related genes such as the chitinase gene ahchi1 of the glycoside hydrolase (GH) 18 family and a carbohydrate-binding module (CBM)-related gene from the dispensable families of cultivated populations. The genomic difference in the ahchi1 gene between the wild and cultivated genomes was caused by a 33 kb presence/absence variation (PAV). The detection rate of the ahchi1 gene was 93.75% in the cultivated population, significantly higher than that in the wild population (17.39%), indicating that it has been selected in cultivated strains. Principal component analysis (PCA) of the polymorphic markers in fragments near the ahchi1 gene was enriched in cultivated strains, and this was caused by multiple independent instances of artificial selection. We revealed for the first time the genetic basis of the ahchi1 gene in domestication, thereby providing a foundation for elucidating the potential function of the ahchi1 gene in the breeding of A. heimuer.

3.
PLoS One ; 17(5): e0268340, 2022.
Article in English | MEDLINE | ID: mdl-35544541

ABSTRACT

Continued waves, new variants, and limited vaccine deployment mean that SARS-CoV-2 tests remain vital to constrain the coronavirus disease 2019 (COVID-19) pandemic. Affordable, point-of-care (PoC) tests allow rapid screening in non-medical settings. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) is an appealing approach. A crucial step is to optimize testing in low/medium resource settings. Here, we optimized RT-LAMP for SARS-CoV-2 and human ß-actin, and tested clinical samples in multiple countries. "TTTT" linker primers did not improve performance, and while guanidine hydrochloride, betaine and/or Igepal-CA-630 enhanced detection of synthetic RNA, only the latter two improved direct assays on nasopharygeal samples. With extracted clinical RNA, a 20 min RT-LAMP assay was essentially as sensitive as RT-PCR. With raw Canadian nasopharygeal samples, sensitivity was 100% (95% CI: 67.6% - 100%) for those with RT-qPCR Ct values ≤ 25, and 80% (95% CI: 58.4% - 91.9%) for those with 25 < Ct ≤ 27.2. Highly infectious, high titer cases were also detected in Colombian and Ecuadorian labs. We further demonstrate the utility of replacing thermocyclers with a portable PoC device (FluoroPLUM). These combined PoC molecular and hardware tools may help to limit community transmission of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Canada , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Point-of-Care Systems , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
4.
Nat Biomed Eng ; 6(3): 246-256, 2022 03.
Article in English | MEDLINE | ID: mdl-35256758

ABSTRACT

In low-resource settings, resilience to infectious disease outbreaks can be hindered by limited access to diagnostic tests. Here we report the results of double-blinded studies of the performance of paper-based diagnostic tests for the Zika and chikungunya viruses in a field setting in Latin America. The tests involved a cell-free expression system relying on isothermal amplification and toehold-switch reactions, a purpose-built portable reader and onboard software for computer vision-enabled image analysis. In patients suspected of infection, the accuracies and sensitivities of the tests for the Zika and chikungunya viruses were, respectively, 98.5% (95% confidence interval, 96.2-99.6%, 268 serum samples) and 98.5% (95% confidence interval, 91.7-100%, 65 serum samples) and approximately 2 aM and 5 fM (both concentrations are within clinically relevant ranges). The analytical specificities and sensitivities of the tests for cultured samples of the viruses were equivalent to those of the real-time quantitative PCR. Cell-free synthetic biology tools and companion hardware can provide de-centralized, high-capacity and low-cost diagnostics for use in low-resource settings.


Subject(s)
Chikungunya Fever , Chikungunya virus , Dengue , Zika Virus Infection , Zika Virus , Chikungunya Fever/diagnosis , Chikungunya Fever/epidemiology , Dengue/diagnosis , Humans , Zika Virus/genetics , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology
5.
Nat Commun ; 12(1): 724, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33526784

ABSTRACT

Recent advances in cell-free synthetic biology have given rise to gene circuit-based sensors with the potential to provide decentralized and low-cost molecular diagnostics. However, it remains a challenge to deliver this sensing capacity into the hands of users in a practical manner. Here, we leverage the glucose meter, one of the most widely available point-of-care sensing devices, to serve as a universal reader for these decentralized diagnostics. We describe a molecular translator that can convert the activation of conventional gene circuit-based sensors into a glucose output that can be read by off-the-shelf glucose meters. We show the development of new glucogenic reporter systems, multiplexed reporter outputs and detection of nucleic acid targets down to the low attomolar range. Using this glucose-meter interface, we demonstrate the detection of a small-molecule analyte; sample-to-result diagnostics for typhoid, paratyphoid A/B; and show the potential for pandemic response with nucleic acid sensors for SARS-CoV-2.


Subject(s)
Biosensing Techniques/methods , Gene Regulatory Networks/genetics , Glucose/analysis , Nucleic Acids/analysis , Point-of-Care Systems , Point-of-Care Testing , Biosensing Techniques/instrumentation , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Glucose/metabolism , Humans , Nucleic Acids/genetics , Pandemics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Typhoid Fever/blood , Typhoid Fever/diagnosis , Typhoid Fever/microbiology
6.
Pathogens ; 9(10)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33065983

ABSTRACT

Morels (Morchella spp.) are popular edible fungi with significant economic and scientific value. However, white mold disease, caused by Paecilomyces penicillatus, can reduce morel yield by up to 80% in the main cultivation area in China. Paecilomyces is a polyphyletic genus and the exact phylogenetic placement of P. penicillatus is currently still unclear. Here, we obtained the first high-quality genome sequence of P. penicillatus generated through the single-molecule real-time (SMRT) sequencing platform. The assembled draft genome of P. penicillatus was 40.2 Mb, had an N50 value of 2.6 Mb and encoded 9454 genes. Phylogenetic analysis of single-copy orthologous genes revealed that P. penicillatus is in Hypocreales and closely related to Hypocreaceae, which includes several genera exhibiting a mycoparasitic lifestyle. CAZymes analysis demonstrated that P. penicillatus encodes a large number of fungal cell wall degradation enzymes. We identified many gene clusters involved in the production of secondary metabolites known to exhibit antifungal, antibacterial, or insecticidal activities. We further demonstrated through dual culture assays that P. penicillatus secretes certain soluble compounds that are inhibitory to the mycelial growth of Morchella sextelata. This study provides insights into the correct phylogenetic placement of P. penicillatus and the molecular mechanisms that underlie P. penicillatus pathogenesis.

7.
Accid Anal Prev ; 144: 105641, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32574768

ABSTRACT

Driving has become common, and distracted driving, especially that caused by WeChat use, is a significant cause of traffic crashes. Based on the theory of planned behavior, this study analyzes self-reports from a sample of 286 drivers from China to explore the influence of different WeChat functions on driving behavior. The analyses reveal that the intention to use WeChat while driving can substantially predict the use of WeChat while driving. Moreover, drivers' attitudes can effectively predict whether they will send texts, listen to voice messages, and send and browse pictures on WeChat while driving. However, drivers' attitudes cannot effectively predict whether they will read texts or send voice messages on WeChat while driving. In recent years, WeChat has become a popular messaging software, and many drivers use it. Therefore, it is important and necessary to raise awareness among drivers about the dangers of using WeChat while driving.


Subject(s)
Accidents, Traffic/prevention & control , Distracted Driving/psychology , Social Media/statistics & numerical data , Text Messaging/statistics & numerical data , Accidents, Traffic/statistics & numerical data , Adult , Attitude , China , Female , Humans , Intention , Male , Middle Aged , Self Report , Young Adult
8.
Zhongguo Dang Dai Er Ke Za Zhi ; 21(6): 573-579, 2019 Jun.
Article in Chinese | MEDLINE | ID: mdl-31208512

ABSTRACT

OBJECTIVE: To study the clinical value of serum neuroglobin in evaluating hypoglycemic brain injury in neonates. METHODS: A total of 100 neonates with hypoglycemia were enrolled as subjects. According to amplitude-integrated EEG (aEEG) findings and/or clinical manifestations, they were divided into symptomatic hypoglycemic brain injury group (n=22), asymptomatic hypoglycemic brain injury group (n=37) and hypoglycemic non-brain injury group (n=41). The three groups were compared in terms of blood glucose, duration of hypoglycemia, levels of neuroglobin and neuron-specific enolase (NSE), and modified aEEG score. The correlation of neuroglobin with NSE and modified aEEG score was analyzed. The receiver operating characteristic (ROC) curve was plotted. RESULTS: Compared with the asymptomatic hypoglycemic brain injury and hypoglycemic non-brain injury groups, the symptomatic hypoglycemic brain injury group had significantly lower blood glucose and modified aEEG score, significantly higher neuroglobin and NSE levels, and a significantly longer duration of hypoglycemia (P<0.05). Compared with the hypoglycemic non-brain injury group, the asymptomatic hypoglycemic brain injury group had significantly lower blood glucose and modified aEEG score, significantly higher neuroglobin and NSE levels, and a significantly longer duration of hypoglycemia (P<0.05). Neuroglobin was positively correlated with NSE and duration of hypoglycemia (r=0.922 and 0.929 respectively; P<0.05) and negatively correlated with blood glucose and modified aEEG score (r=-0.849 and -0.968 respectively; P<0.05). The areas under the ROC curve of neuroglobin, NSE and modified aEEG score were 0.894, 0.890 and 0.941 respectively, and neuroglobin had a sensitivity of 80.8% and a specificity of 95.8% at the optimal cut-off value of 108 mg/L. CONCLUSIONS: Like NSE and modified aEEG score, serum neuroglobin can also be used as a specific indicator for the assessment of brain injury in neonates with hypoglycemia and has a certain value in clinical practice.


Subject(s)
Brain Injuries , Neuroglobin/blood , Electroencephalography , Humans , Hypoglycemic Agents , Infant, Newborn , Phosphopyruvate Hydratase
9.
Biomed Res Int ; 2019: 5949485, 2019.
Article in English | MEDLINE | ID: mdl-31930129

ABSTRACT

ACTN4, a gene which codes for the protein α-actinin-4, is critical for the maintenance of the renal filtration barrier. It is well known that ACTN4 mutations can lead to kidney dysfunction, such as familial focal segmental glomerulosclerosis (FSGS), a common cause of primary nephrotic syndrome (PNS). To elucidate whether other mutations of ACTN4 exist in PNS patients, we sequenced the ACTN4 gene in biopsies collected from 155 young PNS patients (≤16 years old). The patients were classified into five groups: FSGS, minimal change nephropathy, IgA nephropathy, membranous nephropathy, and those without renal puncture. Ninety-eight healthy people served as controls. Samples were subjected to Illumina's next generation sequencing protocols using FastTarget target gene capture method. We identified 5 ACTN4 mutations which occurred only in PNS patients: c.1516G > A (p.G506S) on exon 13 identified in two PNS patients, one with minimal change nephropathy and another without renal puncture; c.1442 + 10G > A at the splice site in a minimal change nephropathy patient; c.2191-4G > A at the cleavage site, identified from two FSGS patients; and c.1649A > G (p.D550G) on exon 14 together with c.2191-4G > A at the cleavage sites, identified from two FSGS patients. Among these, c.1649A > G (p.D550G) is a novel ACTN4 mutation. Patients bearing the last two mutations exhibited resistance to clinical therapies.


Subject(s)
Actinin/genetics , Drug Resistance/genetics , Mutation/genetics , Nephrotic Syndrome/genetics , Child , Exons/genetics , Female , Glomerulonephritis, Membranous/genetics , Humans , Immunoglobulin A/genetics , Kidney/pathology , Male
10.
Int J Clin Exp Pathol ; 8(10): 12564-70, 2015.
Article in English | MEDLINE | ID: mdl-26722445

ABSTRACT

BACKGROUND: Central precocious puberty (CPP) is characterized as increasing gonadotropin-releasing hormone (GnRH) release. Orexin-A has also been shown to affect GnRH release. However, there are few reports about the effect of orexin A on the treatment of CPP. METHODS: After establishing the precocious puberty model, the rats were divided into four groups: normal control, precocious puberty rats, precocious puberty rats treated with normal saline and precocious puberty rats treated with orexin-A. The vaginal opening time, second estrus cycle, ovarian index and uterus index of rats in each group were detected. qRT-PCR was performed to examine the expression of MEG3 and kisspeptin in rats. HT22 cells were transfected with pcDNA-MEG3 to detect the expression of Kisspeptin. RESULTS: In this study, we found that orexin-A not only delayed the day of vaginal opening and regular estrus cycle days but also decreased the ovarian index and uterus index in rats with CPP. In addition, orexin-A reversed the up-regulation of MEG3 and kisspeptin in rats with CPP. In HT22 cells, the mRNA and protein level of kisspeptin were enhanced by pcDNA-MEG3. CONCLUSION: Our results suggest that orexin-A ameliorates central precocious puberty in rat and MEG3 might be involved in this effect, suggesting that MEG3 might be a novel target in treating central precocious puberty.


Subject(s)
Orexins/administration & dosage , RNA, Long Noncoding/biosynthesis , Sexual Maturation/drug effects , Sexual Maturation/physiology , Animals , Blotting, Western , Cell Line , Chromatin Immunoprecipitation , Disease Models, Animal , Female , Injections, Intraventricular , Kisspeptins/biosynthesis , Lateral Ventricles , Mice , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Transfection
11.
PLoS One ; 9(12): e113801, 2014.
Article in English | MEDLINE | ID: mdl-25474202

ABSTRACT

Our previous studies indicated that transcription factor Brn-4 is upregulated in the surgically denervated hippocampus in vivo, promoting neuronal differentiation of hippocampal neural stem cells (NSCs) in vitro. The molecules mediating Brn-4 upregulation in the denervated hippocampus remain unknown. In this study we examined the levels of insulin-like growth factor-1 (IGF-1) in hippocampus following denervation. Surgical denervation led to a significant increase in IGF-1 expression in vivo. We also report that IGF-1 treatment on NSCs in vitro led to a marked acceleration of Brn-4 expression and cell differentiation down neuronal pathways. The promotion effects were blocked by PI3K-specific inhibitor (LY294002), but not MAPK inhibitor (PD98059); levels of phospho-Akt were increased by IGF-1 treatment. In addition, inhibition of IGF-1 receptor (AG1024) and mTOR (rapamycin) both attenuated the increased expression of Brn-4 induced by IGF-1. Together, the results demonstrated that upregulation of IGF-1 induced by hippocampal denervation injury leads to activation of the PI3K/Akt signaling pathway, which in turn gives rise to upregulation of the Brn-4 and subsequent stem cell differentiation down neuronal pathways.


Subject(s)
Insulin-Like Growth Factor I/pharmacology , Neural Stem Cells/drug effects , POU Domain Factors/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects , Animals , Cell Differentiation/drug effects , Cells, Cultured , Chromones/pharmacology , Female , Flavonoids/pharmacology , Hippocampus/cytology , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Morpholines/pharmacology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , POU Domain Factors/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Tyrphostins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...