Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Plant Cell Environ ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222055

ABSTRACT

Pentatricopeptide repeat (PPR) gene family constitutes one of the largest gene families in plants, which mainly participate in RNA editing and RNA splicing of organellar RNAs, thereby affecting the organellar development. Recently, some evidence elucidated the important roles of PPR proteins in the albino process of plant leaves. However, the functions of PPR genes in the woody mangrove species have not been investigated. In this study, using a typical true mangrove Kandelia obovata, we systematically identified 298 PPR genes and characterized their general features and physicochemical properties, including evolutionary relationships, the subcellular localization, PPR motif type, the number of introns and PPR motifs, and isoelectric point, and so forth. Furthermore, we combined genome-wide association studies (GWAS) and transcriptome analysis to identify the genetic architecture and potential PPR genes associated with propagule leaves colour variations of K. obovata. As a result, we prioritized 16 PPR genes related to the albino phenotype using different strategies, including differentially expressed genes analysis and genetic diversity analysis. Further analysis discovered two genes of interest, namely Maker00002998 (PLS-type) and Maker00003187 (P-type), which were differentially expressed genes and causal genes detected by GWAS analysis. Moreover, we successfully predicted downstream target chloroplast genes (rps14, rpoC1 and rpoC2) bound by Maker00002998 PPR proteins. The experimental verification of RNA editing sites of rps14, rpoC1, and rpoC2 in our previous study and the verification of interaction between Maker00002998 and rps14 transcript using in vitro RNA pull-down assays revealed that Maker00002998 PPR protein might be involved in the post-transcriptional process of chloroplast genes. Our result provides new insights into the roles of PPR genes in the albinism mechanism of K. obovata propagule leaves.

2.
Tree Physiol ; 44(8)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-38976033

ABSTRACT

Mangroves perform a crucial ecological role along the tropical and subtropical coastal intertidal zone where salinity fluctuation occurs frequently. However, the differential responses of mangrove plant at the combined transcriptome and metabolome level to variable salinity are not well documented. In this study, we used Avicennia marina (Forssk.) Vierh., a pioneer species of mangrove wetlands and one of the most salt-tolerant mangroves, to investigate the differential salt tolerance mechanisms under low and high salinity using inductively coupled plasma-mass spectrometry, transcriptomic and metabolomic analysis. The results showed that HAK8 was up-regulated and transported K+ into the roots under low salinity. However, under high salinity, AKT1 and NHX2 were strongly induced, which indicated the transport of K+ and Na+ compartmentalization to maintain ion homeostasis. In addition, A. marina tolerates low salinity by up-regulating ABA signaling pathway and accumulating more mannitol, unsaturated fatty acids, amino acids' and L-ascorbic acid in the roots. Under high salinity, A. marina undergoes a more drastic metabolic network rearrangement in the roots, such as more L-ascorbic acid and oxiglutatione were up-regulated, while carbohydrates, lipids and amino acids were down-regulated in the roots, and, finally, glycolysis and TCA cycle were promoted to provide more energy to improve salt tolerance. Our findings suggest that the major salt tolerance traits in A. marina can be attributed to complex regulatory and signaling mechanisms, and show significant differences between low and high salinity.


Subject(s)
Avicennia , Metabolome , Plant Roots , Salinity , Salt Tolerance , Salt-Tolerant Plants , Transcriptome , Avicennia/genetics , Avicennia/physiology , Avicennia/metabolism , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Salt-Tolerant Plants/physiology , Plant Roots/metabolism , Plant Roots/genetics , Salt Tolerance/genetics , Gene Expression Regulation, Plant
3.
Plant J ; 119(5): 2349-2362, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981025

ABSTRACT

Mangroves grow in tropical/subtropical intertidal habitats with extremely high salt tolerance. Trehalose and trehalose-6-phosphate (T6P) have an alleviating function against abiotic stress. However, the roles of trehalose in the salt tolerance of salt-secreting mangrove Avicennia marina is not documented. Here, we found that trehalose was significantly accumulated in A. marina under salt treatment. Furthermore, exogenous trehalose can enhance salt tolerance by promoting the Na+ efflux from leaf salt gland and root to reduce the Na+ content in root and leaf. Subsequently, eighteen trehalose-6-phosphate synthase (AmTPS) and 11 trehalose-6-phosphate phosphatase (AmTPP) genes were identified from A. marina genome. Abscisic acid (ABA) responsive elements were predicted in AmTPS and AmTPP promoters by cis-acting elements analysis. We further identified AmTPS9A, as an important positive regulator, that increased the salt tolerance of AmTPS9A-overexpressing Arabidopsis thaliana by altering the expressions of ion transport genes and mediating Na+ efflux from the roots of transgenic A. thaliana under NaCl treatments. In addition, we also found that ABA could promote the accumulation of trehalose, and the application of exogenous trehalose significantly promoted the biosynthesis of ABA in both roots and leaves of A. marina. Ultimately, we confirmed that AmABF2 directly binds to the AmTPS9A promoter in vitro and in vivo. Taken together, we speculated that there was a positive feedback loop between trehalose and ABA in regulating the salt tolerance of A. marina. These findings provide new understanding to the salt tolerance of A. marina in adapting to high saline environment at trehalose and ABA aspects.


Subject(s)
Abscisic Acid , Avicennia , Gene Expression Regulation, Plant , Salt Tolerance , Sodium , Trehalose , Trehalose/metabolism , Salt Tolerance/genetics , Abscisic Acid/metabolism , Avicennia/physiology , Avicennia/genetics , Sodium/metabolism , Plants, Genetically Modified , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/physiology , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/physiology
4.
Plant J ; 118(4): 1119-1135, 2024 May.
Article in English | MEDLINE | ID: mdl-38308390

ABSTRACT

Salicylic acid (SA) is known to enhance salt tolerance in plants. However, the mechanism of SA-mediated response to high salinity in halophyte remains unclear. Using electrophysiological and molecular biological methods, we investigated the role of SA in response to high salinity in mangrove species, Kandelia obovata, a typical halophyte. Exposure of K. obovata roots to high salinity resulted in a rapid increase in endogenous SA produced by phenylalanine ammonia lyase pathway. The application of exogenous SA improved the salt tolerance of K. obovata, which depended on the NADPH oxidase-mediated H2O2. Exogenous SA and H2O2 increased Na+ efflux and reduced K+ loss by regulating the transcription levels of Na+ and K+ transport-related genes, thus reducing the Na+/K+ ratio in the salt-treated K. obovata roots. In addition, exogenous SA-enhanced antioxidant enzyme activity and its transcripts, and the expressions of four genes related to AsA-GSH cycle as well, then alleviated oxidative damages in the salt-treated K. obovata roots. However, the above effects of SA could be reversed by diphenyleneiodonium chloride (the NADPH oxidase inhibitor) and paclobutrazol (a SA biosynthesis inhibitor). Collectively, our results demonstrated that SA-induced salt tolerance of K. obovata depends on NADPH oxidase-generated H2O2 that affects Na+/K+ and redox homeostasis in response to high salinity.


Subject(s)
Homeostasis , Hydrogen Peroxide , NADPH Oxidases , Oxidation-Reduction , Plant Roots , Potassium , Salicylic Acid , Salt Tolerance , Sodium , Hydrogen Peroxide/metabolism , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Potassium/metabolism , Salt Tolerance/genetics , Sodium/metabolism , Plant Roots/genetics , Plant Roots/physiology , Plant Roots/metabolism , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Salt-Tolerant Plants/physiology , Gene Expression Regulation, Plant , Rhizophoraceae/physiology , Rhizophoraceae/genetics , Rhizophoraceae/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
5.
J Exp Bot ; 75(8): 2266-2279, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38190348

ABSTRACT

In plants, C-to-U RNA editing mainly occurs in plastid and mitochondrial transcripts, which contributes to a complex transcriptional regulatory network. More evidence reveals that RNA editing plays critical roles in plant growth and development. However, accurate detection of RNA editing sites using transcriptome sequencing data alone is still challenging. In the present study, we develop PlantC2U, which is a convolutional neural network, to predict plastid C-to-U RNA editing based on the genomic sequence. PlantC2U achieves >95% sensitivity and 99% specificity, which outperforms the PREPACT tool, random forests, and support vector machines. PlantC2U not only further checks RNA editing sites from transcriptome data to reduce possible false positives, but also assesses the effect of different mutations on C-to-U RNA editing based on the flanking sequences. Moreover, we found the patterns of tissue-specific RNA editing in the mangrove plant Kandelia obovata, and observed reduced C-to-U RNA editing rates in the cold stress response of K. obovata, suggesting their potential regulatory roles in plant stress adaptation. In addition, we present RNAeditDB, available online at https://jasonxu.shinyapps.io/RNAeditDB/. Together, PlantC2U and RNAeditDB will help researchers explore the RNA editing events in plants and thus will be of broad utility for the plant research community.


Subject(s)
Deep Learning , RNA Editing , RNA Editing/genetics , Plants/metabolism , Plastids/genetics , Plastids/metabolism , Transcriptome , RNA, Plant/genetics , RNA, Plant/metabolism
6.
Tree Physiol ; 44(1)2024 02 06.
Article in English | MEDLINE | ID: mdl-37769324

ABSTRACT

Salt secretion is an important strategy used by the mangrove plant Aegiceras corniculatum to adapt to the coastal intertidal environment. However, the structural, developmental and functional analyses on the leaf salt glands, particularly the salt secretion mechanism, are not well documented. In this study, we investigated the structural, developmental and degenerative characteristics and the salt secretion mechanisms of salt glands to further elucidate the mechanisms of salt tolerance of A. corniculatum. The results showed that the salt gland cells have a large number of mitochondria and vesicles, and plenty of plasmodesmata as well, while chloroplasts were found in the collecting cells. The salt glands developed early and began to differentiate at the leaf primordium stage. We observed and defined three stages of salt gland degradation for the first time in A. corniculatum, where the secretory cells gradually twisted and wrinkled inward and collapsed downward as the salt gland degeneration increased and the intensity of salt gland autofluorescence gradually diminished. In addition, we found that the salt secretion rate of the salt glands increased when the treated concentration of NaCl increased, reaching the maximum at 400 mM NaCl. The salt-secreting capacity of the salt glands of the adaxial epidermis is significantly greater than that of the abaxial epidermis. The real-time quantitative PCR results indicate that SAD2, TTG1, GL2 and RBR1 may be involved in regulating the development of the salt glands of A. corniculatum. Moreover, Na+/H+ antiporter, H+-ATPase, K+ channel and Cl- channel may play important roles in the salt secretion of salt glands. In sum mary, this study strengthens the understanding of the structural, developmental and degenerative patterns of salt glands and salt secretion mechanisms in mangrove recretohalophyte A. corniculatum, providing an important reference for further studies at the molecular level.


Subject(s)
Primulaceae , Salt Gland , Environment , Plant Leaves/metabolism , Primulaceae/physiology , Sodium Chloride/metabolism
7.
Plant Cell Environ ; 47(3): 832-853, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37984066

ABSTRACT

Aquaporins (AQPs) regulate the transport of water and other substrates, aiding plants in adapting to stressful environments. However, the knowledge of AQPs in salt-secreting and viviparous Avicennia marina is limited. In this study, 46 AmAQPs were identified in A. marina genome, and their subcellular localisation and function in transporting H2 O2 and boron were assessed through bioinformatics analysis and yeast transformation. Through analysing their expression patterns via RNAseq and real-time quantitative polymerase chain reaction, we found that most AmAQPs were downregulated in response to salt and tidal flooding. AmPIP (1;1, 1;7, 2;8, 2;9) and AmTIP (1;5, 1;6) as salt-tolerant candidate genes may contribute to salt secretion together with Na+ /H+ antiporters. AmPIP2;1 and AmTIP1;5 were upregulated during tidal flooding and may be regulated by anaerobic-responsive element and ethylene-responsive element cis-elements, aiding in adaptation to tidal inundation. Additionally, we found that the loss of the seed desiccation and dormancy-related TIP3 gene, and the loss of the seed dormancy regulator DOG1 gene, or DOG1 protein lack heme-binding capacity, may be genetic factors contributing to vivipary. Our findings shed light on the role of AQPs in A. marina adaptation to intertidal environments and their relevance to salt secretion and vivipary.


Subject(s)
Aquaporins , Avicennia , Avicennia/metabolism , Ecosystem , Water/metabolism , Aquaporins/genetics , Aquaporins/metabolism
8.
J Hazard Mater ; 459: 132321, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37597395

ABSTRACT

Mangrove Avicennia marina has the importantly potential for cadmium (Cd) pollution remediation in coastal wetlands. Unfortunately, the molecular mechanisms and transporter members for Cd uptake by the roots of A. marina are not well documented. In this study, photosynthetic and phenotypic analysis indicated that A. marina is particularly tolerant to Cd. The content and flux analysis indicated that Cd is mainly retained in the roots, with greater Cd influx in fine roots than that in coarse roots, and higher Cd influx in the root meristem zone as well. Using transcriptomic analysis, a total of 5238 differentially expressed genes were identified between the Cd treatment and control group. Moreover, we found that 54 genes were responsible for inorganic ion transport. Among these genes, AmHMA2, AmIRT1, and AmPCR2 were localized in the plasma membrane and AmZIP1 was localized in both plasma membrane and cytoplasm. All above gene encoding transporters showed significant Cd transport activities using function assay in yeast cells. In addition, the overexpression of AmZIP1 or AmPCR2 in Arabidopsis improved the Cd tolerance of transgenic plants. This is particularly significant as it provides insight into the molecular mechanism for Cd uptake by the roots of mangrove plants and a theoretical basis for coastal wetland phytoremediation.


Subject(s)
Arabidopsis , Avicennia , Fabaceae , Avicennia/genetics , Cadmium/toxicity , Membrane Transport Proteins , Biological Transport , Wetlands
9.
Plant Cell Rep ; 42(9): 1473-1485, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37516984

ABSTRACT

KEY MESSAGE: This study provided important insights into the genetic architecture of variations in A. thaliana leaf ionome in a cell-type-specific manner. The functional interpretation of traits associated variants by expression quantitative trait loci (eQTL) analysis is usually performed in bulk tissue samples. While the regulation of gene expression is context-dependent, such as cell-type-specific manner. In this study, we estimated cell-type abundances from 728 bulk tissue samples using single-cell RNA-sequencing dataset, and performed cis-eQTL mapping to identify cell-type-interaction eQTL (cis-eQTLs(ci)) in A. thaliana. Also, we performed Genome-wide association studies (GWAS) analyses for 999 accessions to identify the genetic basis of variations in A. thaliana leaf ionome. As a result, a total of 5,664 unique eQTL genes and 15,038 unique cis-eQTLs(ci) were significant. The majority (62.83%) of cis-eQTLs(ci) were cell-type-specific eQTLs. Using colocalization, we uncovered one interested gene AT2G25590 in Phloem cell, encoding a kind of plant Tudor-like protein with possible chromatin-associated functions, which colocalized with the most significant cis-eQTL(ci) of a Mo-related locus (Chr2:10,908,806:A:C; P = 3.27 × 10-27). Furthermore, we prioritized eight target genes associated with AT2G25590, which were previously reported in regulating the concentration of Mo element in A. thaliana. This study revealed the genetic regulation of ionomic variations and provided a foundation for further studies on molecular mechanisms of genetic variants controlling the A. thaliana ionome.


Subject(s)
Arabidopsis , Quantitative Trait Loci , Arabidopsis/genetics , Gene Expression Regulation , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics
10.
Am J Transl Res ; 15(3): 2175-2182, 2023.
Article in English | MEDLINE | ID: mdl-37056819

ABSTRACT

OBJECTIVE: To investigate the value of lung ultrasound (LUS) in assessing the degree of lesions in children with mycoplasma pneumoniae pneumonia (MPP). METHODS: The clinical data of 100 children with pediatric MPP admitted to Jincheng General Hospital were retrospectively analyzed. Based on the standard of refractory MPP, the enrolled MPP-children were divided into refractory MPP group (n=25) and general MPP group (n=75). The general data were collected and compared between the two groups. The length of parenchymal lung lesions, the area in parenchymal lung lesions, and APACHE II scores were compared between the two groups. Logistic analysis was used to explore the risk factors that influence the extent of lesions in children with MPP. The receiver operating characteristic (ROC) curve was used to evaluate the ability of candidate indicators to predict the extent of lesions in children with MPP. RESULTS: Logistic regression equation analysis revealed that the length and area of parenchymal lung lesions were the factors influencing the extent of lesions in children with MPP (P<0.05). ROC curve showed that the AUC value of length of parenchymal lesions was 0.667, and the best sensitivity and specificity were 78.56% and 69.14%, respectively. The AUC value of area of parenchymal lesions was 0.582, and the best sensitivity and specificity were 58.19% and 81.04%, respectively. CONCLUSION: Lung ultrasound measurement of length and area of parenchymal lung lesions can be used to assess the extent of lesion in children with MPP and provide a basis for clinical treatment planning.

11.
J Hazard Mater ; 448: 130880, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36736216

ABSTRACT

Cadmium (Cd) contamination is becoming a widespread environmental problem. However, the differential responsive mechanisms of Cd hyperaccumulator Solanum nigrum to low or high dose of Cd are not well documented. In this study, phenotypic and physiological analysis firstly suggested that the seedlings of S. nigrum showed slight leaf chlorosis symptoms under 25 µM Cd and severe inhibition on growth and photosynthesis under 100 µM Cd. Further proteomic analysis identified 105 differentially expressed proteins (DEPs) in the Cd-treated leaves. Under low dose of Cd stress, 47 DEPs are mainly involved in primary metabolic processes, while under high dose of Cd stress, 92 DEPs are mainly involved in photosynthesis, energy metabolism, production of phytochelatin and reactive oxygen species (ROS). Protein-protein interaction (PPI) network analysis of DEPs support above differential responses in the leaves of S. nigrum to low and high dose of Cd treatments. This work provides the differential responsive mechanisms in S. nigrum to low and high dose of Cd, and the theoretical foundation for the application of hyperaccumulating plants in the phytoremediation of Cd-contaminated soils.


Subject(s)
Soil Pollutants , Solanum nigrum , Solanum nigrum/metabolism , Cadmium/metabolism , Proteomics , Soil Pollutants/metabolism , Plant Roots/metabolism , Biodegradation, Environmental , Soil
12.
Plant Cell Environ ; 46(5): 1521-1539, 2023 05.
Article in English | MEDLINE | ID: mdl-36658747

ABSTRACT

Hydrogen sulfide (H2 S) is considered to mediate plant growth and development. However, whether H2 S regulates the adaptation of mangrove plant to intertidal flooding habitats is not well understood. In this study, sodium hydrosulfide (NaHS) was used as an H2 S donor to investigate the effect of H2 S on the responses of mangrove plant Avicennia marina to waterlogging. The results showed that 24-h waterlogging increased reactive oxygen species (ROS) and cell death in roots. Excessive mitochondrial ROS accumulation is highly oxidative and leads to mitochondrial structural and functional damage. However, the application of NaHS counteracted the oxidative damage caused by waterlogging. The mitochondrial ROS production was reduced by H2 S through increasing the expressions of the alternative oxidase genes and increasing the proportion of alternative respiratory pathway in the total mitochondrial respiration. Secondly, H2 S enhanced the capacity of the antioxidant system. Meanwhile, H2 S induced Ca2+ influx and activated the expression of intracellular Ca2+ -sensing-related genes. In addition, the alleviating effect of H2 S on waterlogging can be reversed by Ca2+ chelator and Ca2+ channel blockers. In conclusion, this study provides the first evidence to explain the role of H2 S in waterlogging adaptation in mangrove plants from the mitochondrial aspect.


Subject(s)
Avicennia , Hydrogen Sulfide , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Calcium/metabolism , Avicennia/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress
13.
Plant Mol Biol ; 111(4-5): 393-413, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36645624

ABSTRACT

NAC (NAM, ATAF1/2, CUC2) transcription factors (TFs) constitute a plant-specific gene family. It is reported that NAC TFs play important roles in plant growth and developmental processes and in response to biotic/abiotic stresses. Nevertheless, little information is known about the functional and evolutionary characteristics of NAC TFs in mangrove plants, a group of species adapting coastal intertidal habitats. Thus, we conducted a comprehensive investigation for NAC TFs in Avicennia marina, one pioneer species of mangrove plants. We totally identified 142 NAC TFs from the genome of A. marina. Combined with NAC proteins having been functionally characterized in other organisms, we built a phylogenetic tree to infer the function of NAC TFs in A. marina. Gene structure and motif sequence analyses suggest the sequence conservation and transcription regulatory regions-mediated functional diversity. Whole-genome duplication serves as the driver force to the evolution of NAC gene family. Moreover, two pairs of NAC genes were identified as positively selected genes of which AmNAC010/040 may be imposed on less constraint toward neofunctionalization. Quite a few stress/hormone-related responsive elements were found in promoter regions indicating potential response to various external factors. Transcriptome data revealed some NAC TFs were involved in pneumatophore and leaf salt gland development and response to salt, flooding and Cd stresses. Gene co-expression analysis found a few NAC TFs participates in the special biological processes concerned with adaptation to intertidal environment. In summary, this study provides detailed functional and evolutionary information about NAC gene family in mangrove plant A. marina and new perspective for adaptation to intertidal habitats.


Subject(s)
Avicennia , Avicennia/chemistry , Avicennia/genetics , Avicennia/metabolism , Phylogeny , Transcription Factors/metabolism , Genes, Plant , Ecosystem
14.
Tree Physiol ; 43(5): 817-831, 2023 05 12.
Article in English | MEDLINE | ID: mdl-36611000

ABSTRACT

Avicennia marina, a mangrove plant growing in coastal wetland habitats, is frequently affected by tidal salinity. To understand its salinity tolerance, the seedlings of A. marina were treated with 0, 200, 400 and 600 mM NaCl. We found the whole-plant dry weight and photosynthetic parameters increased at 200 mM NaCl but decreased over 400 mM NaCl. The maximum quantum yield of primary photochemistry (Fv/Fm) significantly decreased at 600 mM NaCl. Transmission electron microscopy observations showed high salinity caused the reduction in starch grain size, swelling of the thylakoids and separation of the granal stacks, and even destruction of the envelope. In addition, the dense protoplasm and abundant mitochondria in the secretory and stalk cells, and abundant plasmodesmata between salt gland cells were observed in the salt glands of the adaxial epidermis. At all salinities, Na+ content was higher in leaves than in stems and roots; however, Na+ content increased in the roots while it remained at a constant level in the leaves over 400 mM NaCl treatment, due to salt secretion from the salt glands. As a result, salt crystals on the leaf adaxial surface increased with salinity. On the other hand, salt treatment increased Na+ and K+ efflux and decreased H+ efflux from the salt glands by the non-invasive micro-test technology, although Na+ efflux reached the maximum at 400 mM NaCl. Further real-time quantitative PCR analysis indicated that the expression of Na+/H+ antiporter (SOS1 and NHX1), H+-ATPase (AHA1 and VHA-c1) and K+ channel (AKT1, HAK5 and GORK) were up-regulated, and only the only Na+ inward transporter (HKT1) was down-regulated in the salt glands enriched adaxial epidermis of the leaves under 400 mM NaCl treatment. In conclusion, salinity below 200 mM NaCl was beneficial to the growth of A. marina, and below 400 mM, the salt glands could excrete Na+ effectively, thus improving its salt tolerance.


Subject(s)
Avicennia , Animals , Salt Tolerance , Salt Gland/metabolism , Sodium/metabolism , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Homeostasis , Plant Leaves/metabolism , Plant Roots/metabolism
15.
Front Bioeng Biotechnol ; 10: 986355, 2022.
Article in English | MEDLINE | ID: mdl-36091451

ABSTRACT

Dynamic monitoring of tumor markers is an important way to the diagnosis of malignant tumor, evaluate the therapeutic effect of tumor and analyze the prognosis of cancer patients. As a tumor marker of digestive tract, CA242 is often used to Assess the therapeutic effect of colorectal cancer and pancreatic cancer. In this study, immunosensor technology was used to detect CA242. PdAgPt nanocomposites, which have great advantages in biocompatibility, electrical conductivity and catalytic properties, were prepared by hydrothermal synthesis method. The prepared PdAgPt nanocomposites were loaded onto the surface of molybdenum disulfide (MoS2) with large surface area, and the new nanocomposites were synthesized. Using PdAgPt/MoS2 as signal amplification platform, the label-free CA242 electrochemical immunosensor has a wide detection range that extends from 1*10-4 U/ml to 1*102 U/ml and a low detection limit (LOD, 3.43*10-5 U/ml) after optimization of experimental conditions. In addition, the CA242 immunosensor designed in this study also performed well in the evaluation of repeatability, selectivity and stability, and was successfully used for the detection of CA242 in human serum sample. Therefore, the label-free electrochemical immunosensor constructed in this study has a broad application prospect in the detection of clinical biomarkers.

16.
Chemosphere ; 307(Pt 3): 136031, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35981624

ABSTRACT

Cadmium (Cd) is a toxic heavy metal affecting the normal growth of plants. Nitrate (NO3-) and ammonium (NH4+) are the primary forms of inorganic nitrogen (N) absorbed by plants. However, the mechanism of N absorption and regulation under Cd stress remains unclear. This study found that: (1) Cd treatment affected the biomass, root length, and Cd2+ flux in Solanum nigrum seedling roots. Specifically, 50 µM Cd significantly inhibited NO3- influx while increased NH4+ influx compared with 0 and 5 µM Cd treatments measured by non-invasive micro-test technology. (2) qRT-PCR analysis showed that 50 µM Cd inhibited the expressions of nitrate transporter genes, SnNRT2;4 and SnNRT2;4-like, increased the expressions of ammonium transporter genes, SnAMT1;2 and SnAMT1;3, in the roots. (3) Under NH4+ supply, 50 µM Cd significantly induced the expressions of the aquaporin genes, SnPIP1;5, SnPIP2;7, and SnTIP2;1. Our results showed that 50 µM Cd stress promoted NH4+ absorption by up-regulating the gene expressions of NH4+ transporter and aquaporins, suggesting that high Cd stress can affect the preference of N nutrition in S. nigrum.


Subject(s)
Ammonium Compounds , Aquaporins , Soil Pollutants , Solanum nigrum , Ammonium Compounds/metabolism , Aquaporins/genetics , Aquaporins/metabolism , Biodegradation, Environmental , Cadmium/analysis , Membrane Transport Proteins/metabolism , Nitrates/analysis , Nitrogen/analysis , Plant Roots/metabolism , Soil Pollutants/analysis , Solanum nigrum/metabolism
17.
Planta ; 256(1): 6, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35678934

ABSTRACT

MAIN CONCLUSION: Whole-genome duplication, gene family and lineage-specific genes analysis based on high-quality genome reveal the adaptation mechanisms of Avicennia marina to coastal intertidal habitats. Mangrove plants grow in a complex habitat of coastal intertidal zones with high salinity, hypoxia, etc. Therefore, it is an interesting question how mangroves adapt to the unique intertidal environment. Here, we present a chromosome-level genome of the Avicennia marina, a typical true mangrove with a size of 480.43 Mb, contig N50 of 11.33 Mb and 30,956 annotated protein-coding genes. We identified 621 Avicennia-specific genes that are mainly related to flavonoid and lignin biosynthesis, auxin homeostasis and response to abiotic stimulus. We found that A. marina underwent a novel specific whole-genome duplication, which is in line with a brief era of global warming that occurred during the paleocene-eocene maximum. Comparative genomic and transcriptomic analyses outline the distinct evolution and sophisticated regulations of A. marina adaptation to the intertidal environments, including expansion of photosynthesis and oxidative phosphorylation gene families, unique genes and pathways for antibacterial, detoxifying antioxidant and reactive oxygen species scavenging. In addition, we also analyzed salt gland secretion-related genes, and those involved in the red bark-related flavonoid biosynthesis, while significant expansions of key genes such as NHX, 4CL, CHS and CHI. High-quality genomes in future investigations will facilitate the understand of evolution of mangrove and improve breeding.


Subject(s)
Avicennia , Adaptation, Physiological/genetics , Avicennia/genetics , Ecosystem , Flavonoids/genetics , Plant Breeding
18.
Tree Physiol ; 42(9): 1812-1826, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35412618

ABSTRACT

Hydrogen sulfide (H2S), is a crucial biological player in plants. Here, we primarily explored the interaction between sodium hydrosulfide (NaHS, a H2S donor) and the fluxes of Na+ and K+ from the salt glands of mangrove species Avicennia marina (Forsk.) Vierh. with non-invasive micro-test technology (NMT) and quantitative real-time PCR (qRT-PCR) approaches under salinity treatments. The results showed that under 400-mM NaCl treatment, the addition of 200-µM NaHS markedly increased the quantity of salt crystals in the adaxial epidermis of A. marina leaves, accompanied by an increase in the K+/Na+ ratio. Meanwhile, the endogenous content of H2S was dramatically elevated in this process. The NMT result revealed that the Na+ efflux was increased from salt glands, whereas K+ efflux was decreased with NaHS application. On the contrary, the effects of NaHS were reversed by H2S scavenger hypotaurine (HT), and DL-propargylglycine (PAG), an inhibitor of cystathionine-γ-lyase (CES, a H2S synthase). Moreover, enzymic assay revealed that NaHS increased the activities of plasma membrane and tonoplast H+-ATPase. qRT-PCR analysis revealed that NaHS significantly increased the genes transcript levels of tonoplast Na+/H+ antiporter (NHX1), plasma membrane Na+/H+ antiporter (SOS1), plasma membrane H+-ATPase (AHA1) and tonoplast H+-ATPase subunit c (VHA-c1), while suppressed above-mentioned gene expressions by the application of HT and PAG. Overall, H2S promotes Na+ secretion from the salt glands of A. marina by up-regulating the plasma membrane and tonoplast Na+/H+ antiporter and H+-ATPase.


Subject(s)
Avicennia , Hydrogen Sulfide , Adenosine Triphosphatases/metabolism , Animals , Hydrogen Sulfide/metabolism , Salt Gland/metabolism , Sodium/metabolism , Sodium Chloride/pharmacology , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism
19.
Plant Cell Environ ; 45(6): 1698-1718, 2022 06.
Article in English | MEDLINE | ID: mdl-35141923

ABSTRACT

Aquaporins (AQPs) play important roles in plant growth, development and tolerance to environmental stresses. To understand the role of AQPs in the mangrove plant Kandelia obovata, which has the ability to acquire water from seawater, we identified 34 AQPs in the K. obovata genome and analysed their structural features. Phylogenetic analysis revealed that KoAQPs are homologous to AQPs of Populus and Arabidopsis, which are evolutionarily conserved. The key amino acid residues were used to assess water-transport ability. Analysis of cis-acting elements in the promoters indicated that KoAQPs may be stress- and hormone-responsive. Subcellular localization of KoAQPs in yeast showed most KoAQPs function in the membrane system. That transgenic yeast with increased cell volume showed that some KoAQPs have significant water-transport activity, and the substrate sensitivity assay indicates that some KoAQPs can transport H2 O2 . The transcriptome data were used to analyze the expression patterns of KoAQPs in different tissues and developing fruits of K. obovata. In addition, real-time quantitative PCR analyses combined transcriptome data showed that KoAQPs have complex responses to environmental factors, including salinity, flooding and cold. Collectively, the transport of water and solutes by KoAQPs contributed to the adaptation of K. obovata to the coastal intertidal environment.


Subject(s)
Aquaporins , Rhizophoraceae , Aquaporins/genetics , Aquaporins/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Rhizophoraceae/metabolism , Saccharomyces cerevisiae/metabolism , Water/metabolism
20.
J Hazard Mater ; 425: 127947, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34896722

ABSTRACT

Cadmium (Cd) is a harmful heavy metal that affects the growth and development of plants. Nitrogen (N) is an essential nutrient for plants, and appropriate N management can improve Cd tolerance. The aim of our study was to explore the effects of different forms of N on the molecular and physiological responses of the hyperaccumulator Solanum nigrum to Cd toxicity. Measurement of biomass, photosynthetic parameters, and Cd2+ fluxes using non-invasive micro-test technique, Cd fluorescent dying, biochemical methods and quantitative real-time PCR analysis were performed in our study. Our results showed that ammonium (NH4+) has stronger Cd detoxification ability than nitrate (NO3-), which are likely attributed to the following three reasons: (1) NH4+ decreased the influx and accumulation of Cd2+ by regulating the transcription of Cd transport-related genes; (2) the ameliorative effects of NH4+ were accompanied by the increased retention of Cd in the cell walls of roots; and (3) NH4+ up-regulated SnExp expression.


Subject(s)
Ammonium Compounds , Soil Pollutants , Solanum nigrum , Biodegradation, Environmental , Cadmium/analysis , Cadmium/toxicity , Nitrates , Plant Roots/chemistry , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL