Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(26): e2301872, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37395639

ABSTRACT

The increasing demand for clean energy conversion and storage has increased interest in hydrogen production via electrolytic water splitting. However, the simultaneous production of hydrogen and oxygen in this process poses a challenge in extracting pure hydrogen without using ionic conducting membranes. Researchers have developed various innovative designs to overcome this issue, but continuous water splitting in separated tanks remains a desirable approach. This study presents a novel, continuous roll-to-roll process that enables fully decoupled hydrogen evaluation reaction (HER) and oxygen evolution reaction (OER) in two separate electrolyte tanks. The system utilizes specially designed "cable-car" electrodes (CCE) that cycle between the HER and OER tanks, resulting in continuous hydrogen production with a purity of over 99.9% and Coulombic efficiency of 98% for prolonged periods. This membrane-free water splitting system offers promising prospects for scaled-up industrial-scale green hydrogen production, as it reduces the cost and complexity of the system, and allows for the use of renewable energy sources to power the electrolysis process, thus reducing the carbon footprint of hydrogen production.

2.
Nano Lett ; 21(7): 3198-3204, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33754736

ABSTRACT

Carbon nanoparticles (CNPs) have been considered as essential components for various applications including sensors, quantum dots, electrocatalysts, energy storages, lubrication, and functional coatings. Uniform and functional CNP materials can be obtained from candle soot. However, the production of CNPs from candle soot is not a continuous process, limiting the practical production and applications of such materials. Here, a rotating-deposition and separation system for high-efficiency production of low-cost and high-quality CNPs from candle soot is presented. The characteristic of CNPs can be controlled by adjusting the system parameters. Moreover, obtained CNPs can act as photothermal superhydrophobic anti-icing coatings on various substrates. With a sliding angle of less than 3°, water drops can keep rolling off without further nucleation of ice. The reported preparing method is suitable for large-scale applications and various kinds of surfaces and shows great potentials in the growing demands of anti-icing.

3.
Angew Chem Int Ed Engl ; 58(36): 12569-12573, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31267652

ABSTRACT

Water, considered as a universal solvent to dissolve salts, has been extensively studied as liquid electrolyte in electrochemical devices. The water/ice phase transition at around 0 °C presents a common phenomenon in nature, however, the chemical and electrochemical behaviors of ice have rarely been studied. Herein, we discovered that the ice phase provides efficient ionic transport channels and therefore can be applied as generalized solid-state ionic conductor. Solid state ionic conducting ices (ICIs) of Li+ , Na+ , Mg2+ , Al3+ , K+ , Mn2+ , Fe2+ , Co2+ , Ni2+ , Cu2+ , and Zn2+ , frozen from corresponding sulphate solutions, exhibit ionic conductivities ranging from ≈10-7  S cm-1 (Zn2+ ) to ≈10-3  S cm-1 (Li+ ) at temperatures spanning from -20 °C to -5 °C. The discovery of ICIs opens new insight to design and fabrication of solid-state electrolytes that are simple, inexpensive, and versatile.

SELECTION OF CITATIONS
SEARCH DETAIL
...