Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202406711, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923764

ABSTRACT

Spin state is often regarded as the crucial valve to release the reactivity of energy-related catalysts, yet it is also challenging to precisely manipulate, especially for the active center ions occupied at the specific geometric sites. Herein, a π-π type orbital coupling of 3d (Co)-2p (O)-4f (Ce) was employed to regulate the spin state of octahedral cobalt sites (CoOh) in the composite of Co3O4/CeO2. More specifically, the equivalent high-spin ratio of CoOh can reach to 54.7% via tuning the CeO2 content, thereby triggering the average eg filling (1.094) close to the theoretical optimum value. The corresponding catalyst exhibits a superior water oxidation performance with an overpotential of 251 mV at 10 mA cm-2, rivaling most cobalt-based oxides state-of-the-art. The π-π type coupling corroborated by the matched energy levels between Ce t1u/t2u-O and CoOh t2g-O π type bond in the calculated crystal orbital Hamilton population and partial density of states profiles, stimulates a π-donation between O 2p and π-symmetric Ce 4fyz2 orbital, consequently facilitating the electrons hopping from t2g to eg orbital of CoOh. This work offers an in-depth insight into understanding the 4f and 3d orbital coupling for spin state optimization in composite oxides.

2.
Small ; : e2402397, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634268

ABSTRACT

Optimizing the local electronic structure of electrocatalysts can effectively lower the energy barrier of electrochemical reactions, thus enhancing the electrocatalytic activity. However, the intrinsic contribution of the electronic effect is still experimentally unclear. In this work, the electron injection-incomplete discharge approach to achieve the electron accumulation (EA) degree on the nickel-iron layered double hydroxide (NiFe LDH) is proposed, to reveal the intrinsic contribution of EA toward oxygen evolution reaction (OER). Such NiFe LDH with EA effect results in only 262 mV overpotential to reach 50 mA cm-2, which is 51 mV-lower compared with pristine NiFe LDH (313 mV), and reduced Tafel slope of 54.8 mV dec-1 than NiFe LDH (107.5 mV dec-1). Spectroscopy characterizations combined with theoretical calculations confirm that the EA near concomitant Vo can induce a narrower energy gap and lower thermodynamic barrier to enhance OER performance. This study clarifies the mechanism of the EA effect on OER activity, providing a direct electronic structure modulation guideline for effective electrocatalyst design.

3.
Chem Sci ; 13(32): 9440-9449, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36093019

ABSTRACT

Exsolution is an ingenious strategy for the in situ construction of metal- or alloy-decorated oxides and, due to its promising energy related catalysis applications, has advanced from use in perovskites to use in spinels. Despite its great importance for designing target composites, the ability to identify whether active metal ions at octahedral or tetrahedral sites will preferentially exsolve in a spinel remains unexplored. Here, an inverse spinel NiFe2O4 (NFO) was employed as a prototype and FeNi/NFO composites were successfully constructed via exsolution. The preferential breaking of octahedral metal-oxygen bonds in the spinel oxide was directly observed using Mössbauer and X-ray absorption spectroscopy. This was further verified from the negative segregation energies calculated based on density-functional theory. One exsolved FeNi/NFO composite exhibits enhanced electrochemical activity with an overpotential of 283 mV at 10 mA cm-2 and a long stability time for the oxygen evolution reaction. This work offers a unique insight into spinel exsolution based on the preferential breaking of chemical bonds and may be an effective guide for the design of new composite catalysts where the desired metal ions are deliberately introduced to octahedral and/or tetrahedral sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...