Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
2.
Front Vet Sci ; 9: 857183, 2022.
Article in English | MEDLINE | ID: mdl-35464376

ABSTRACT

Propolis is widely used in health preservation and disease healing; it contains many ingredients. The previous study had revealed that the ethanolic or water extracts of propolis have a wide range of efficacy, such as antiviral, immune enhancement, anti-inflammatory, and so on, but its antiviral components and underlying mechanism of action remain unknown. In this study, we investigated the chemical composition, anti-porcine parvovirus (PPV) effectiveness, and immunological enhancement of propolis flavone ethanolic extracts. The chemical composition of propolis flavone was distinguished by ultra-performance liquid chromatography-quadrupole/time-of-flight tandem mass spectrometry analysis. In this study, the presence and characterization of 26 major components were distinguished in negative ionization modes to evaluate the effects of propolis flavonoid used as an adjuvant on the immune response of Landrace-Yorkshire hybrid sows immunized with an inactivated vaccine of PPV. Thirty Landrace-Yorkshire hybrid sows were randomly assigned to one of three groups, and the sows in the adjuvant groups were intramuscularly injected with PPV vaccine with a 2.0-ml propolis flavonoid adjuvant (PA) and oil emulsion adjuvant. After that, serum hemagglutination inhibition antibody titers and specific immunoglobulin (Ig)M and IgG subclasses were measured to evaluate the adjuvant effects of propolis flavonoid on the humoral immune responses, as well as peripheral lymphocyte proliferation activity and serum concentrations of Th1 and Th2 cytokines for cellular immunity. Results indicated an enhancing effect of PA on IgM, interleukins 2 and 4, interferon-γ, and IgG subclass responses. Especially in the effect of improving cellular immune response, the PA was the best. These findings suggested that PA can significantly enhance the immune responses against the PPV vaccine and could be an alternative way to improve PPV vaccination in sows. Furthermore, we screened the PF chemical components to the effectiveness of anti-PPV. Ferulic acid has an excellent anti-PPV effect.

3.
Front Microbiol ; 13: 1100988, 2022.
Article in English | MEDLINE | ID: mdl-36726569

ABSTRACT

Heavy metals released in the environment pose a huge threat to soil and water quality, food safety and public health. Additionally, humans and other mammals may also be directly exposed to heavy metals or exposed to heavy metals through the food chain, which seriously threatens the health of animals and humans. Chromium, especially hexavalent chromium [Cr (VI)], as a common heavy metal, has been shown to cause serious environmental pollution as well as intestinal damage. Thus, increasing research is devoted to finding drugs to mitigate the negative health effects of hexavalent chromium exposure. Seaweed polysaccharides have been demonstrated to have many pharmacological effects, but whether it can alleviate gut microbial dysbiosis caused by hexavalent chromium exposure has not been well characterized. Here, we hypothesized that seaweed polysaccharides could alleviate hexavalent chromium exposure-induced poor health in mice. Mice in Cr and seaweed polysaccharide treatment group was compulsively receive K2Cr2O7. At the end of the experiment, all mice were euthanized, and colon contents were collected for DNA sequencing analysis. Results showed that seaweed polysaccharide administration can restore the gut microbial dysbiosis and the reduction of gut microbial diversity caused by hexavalent chromium exposure in mice. Hexavalent chromium exposure also caused significant changes in the gut microbial composition of mice, including an increase in some pathogenic bacteria and a decrease in beneficial bacteria. However, seaweed polysaccharides administration could ameliorate the composition of gut microbiota. In conclusion, this study showed that seaweed polysaccharides can restore the negative effects of hexavalent chromium exposure in mice, including gut microbial dysbiosis. Meanwhile, this research also lays the foundation for the application of seaweed polysaccharides.

4.
Free Radic Biol Med ; 169: 137-148, 2021 06.
Article in English | MEDLINE | ID: mdl-33857626

ABSTRACT

An extensive body of research has demonstrated that pulmonary toxicity induced by fluoride is related to cell apoptosis. Although induction of death receptor-initiated extrinsic apoptosis by sodium fluoride (NaF) has been reported, its mechanism of action is still not clearly defined. Herein, we found that NaF treatment induced activation of caspase-8 in BEAS-2B cells, resulting in apoptosis, which was markedly reduced by blocking caspase-8 using small interfering RNA (siRNA). In this study, we report that death receptor 5 (DR5), a major component of the extrinsic apoptotic pathway, is markedly induced upon NaF stimulation. Enhanced DR5 induction was necessary for the apoptotic effects of NaF, inasmuch as transfected BEAS-2B cells with DR5 siRNA attenuated NaF-induced caspase-8 activation in lung cells. Mechanism investigation indicated that the induction of DR5, following NaF exposure, was mediated by tumor protein 53 (p53)-dependent transcriptional activation. Notably, we demonstrated that NaF could induce a significant increase in intracellular reactive oxygen species (ROS) level derived from nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). Specifically, NOX4 knockdown inhibited NaF-induced the activation of p53/DR5 axis by reducing NOX4-derived ROS production. Further in vivo investigation demonstrated that NOX4 deficiency markedly attenuates NaF-induced lung injury, apoptosis, and ROS levels in the lung. Moreover, the expressions of p53 and DR5 were significantly reduced after NaF treatment in NOX4 knockout mice compared with the wild type mice. Taken together, our findings provide a novel insight into for the pulmonary apoptosis in response to NaF exposure.


Subject(s)
Sodium Fluoride , Tumor Suppressor Protein p53 , Animals , Apoptosis , Lung/metabolism , Mice , NADPH Oxidase 4/genetics , Reactive Oxygen Species/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Signal Transduction , Sodium Fluoride/toxicity , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
5.
PeerJ ; 9: e12575, 2021.
Article in English | MEDLINE | ID: mdl-35036126

ABSTRACT

Nanoemulsions (NE) are used widely in pharmaceutical drug formulations and vaccine preparation, and Acanthopanax senticousus polysaccharide (ASPS) is a natural bioactive compound with immunostimulatory activity. Therefore, NE-loaded ASPS is expected to provide immunological enhancement for effective treatment. In the present study, Acanthopanax senticousus polysaccharide (ASPS was encapsulated into nanoemulsions, the resultant ASPS-NE were coated with a negative charge, and the immune enhancement mechanism of these ASPS-NE formulations was analyzed. The immunosuppressive animal models (70 ICR mice, male) for the study were established using cyclophosphamide. In addition, the activation of splenocyte proliferation, phagocytosis of the macrophages, the ratio of CD4+ to CD8+, the concentrations of the cytokines in serum, Western blot analysis was used for the analysis of the P65/JNK/ikk α signaling pathway in the peritoneal macrophage s. The results revealed that the ASPS-NE could stimulated the proliferation of splenocytes and enhance immunity. The ASPS-NE induced the expression of different cytokines (TNF-α, IFN-γ, IL-2, and IL-6), could activate the expressions of P65, JNK, and ikkα, and regulated the Th1/Th2 cytokines. These findings demonstrated the potential of ASPS-NE formulations for drug delivery and to induce potent and sustained immune responses.

6.
Int J Biol Macromol ; 165(Pt A): 1331-1345, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33045302

ABSTRACT

Nanodiamonds (NDs), which are safe carbon nanomaterials, have been used for the transmission of DNA, proteins and drugs. The feasibility of utilizing NDs to deliver NH2-PLGA nanoparticle-encapsulated fig polysaccharides for strongly enhanced immune responses has not been clearly studied. In this study, we aimed to use NDs as carriers to deliver NH2-PLGA nanoparticle-encapsulated fig polysaccharides for strongly enhanced immune responses. ND particles with a diameter of 5 nm were functionalized by surface carboxylation and covalently conjugated with NH2-PLGA nanoparticle-encapsulated fig polysaccharides. NDs-PLGA-FP/OVA could promote antigen uptake and lymphocyte proliferation, increase the expression levels of MHC II, CD80 and CD86, and upregulate the ratio of Th1/Th2 cells in immunized mice. NDs-PLGA-FP/OVA could also upregulate the IL-17 signalling pathway for further immunological enhancement. NDs-PLGA-FP/OVA induced increased TNF-α, IFN-γ, IL-4, and IL-6 cytokine secretion and the levels of OVA-specific antibodies (IgG). These findings demonstrate that NDs-PLGA-FP/OVA have the potential to serve as an effective vaccine delivery and adjuvant system to induce vigorous and long-term immune responses.


Subject(s)
Adjuvants, Immunologic/chemistry , Immunity/drug effects , Nanodiamonds/chemistry , Nanoparticles/chemistry , Polysaccharides/pharmacology , Adjuvants, Immunologic/pharmacology , Animals , B7-1 Antigen/genetics , B7-2 Antigen/genetics , Cell Proliferation/drug effects , Ficus/chemistry , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Immunity/immunology , Interferon-gamma/genetics , Interleukin-4/genetics , Interleukin-6/genetics , Mice , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Polysaccharides/chemistry , Th1-Th2 Balance/drug effects , Tumor Necrosis Factor-alpha/genetics
7.
Int J Biol Macromol ; 165(Pt A): 239-248, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32979446

ABSTRACT

Recently, nanoparticles have been widely used in drug and vaccine adjuvant delivery. Dendrobium devonianum Polygonatum (DP), a main biologically active ingredient isolated from Dendrobium devonianum, has been widely used in the clinic as an immunostimulant to stimulate and improve immune responses, contributing to its excellent biological activity. To increase the immune efficacy of DP, macrophage cell membrane-coated drug nanocrystals featuring homologous immune escape, targeting ability and low toxicity are in high demand. In this study, a new drug and vaccine adjuvant delivery system, PEI-MM-PLGA-DP/OVA, was designed and developed. This study aimed to report the macrophage immunomodulatory activity of PEI-modified macrophage cell membrane-coated PLGA nanoparticles encapsulating Dendrobium devonianum polysaccharides. PEI-MM-PLGA-DP/OVA could promote antigen uptake by macrophage and lymphocyte proliferation, increase the expression levels of MHC II, CD80 and CD86, and upregulate the ratio of CD4+ to CD8+ T cells in immunized mice. PEI-MM-PLGA-DP/OVA induced the highest TNF-α, IFN-γ, IL-4, and IL-6 cytokine secretion levels and the levels of OVA-specific antibodies (IgG) compared with the other groups. The above results indicated that PEI-MM-PLGA-DP/OVA had better adjuvant activity than PLGA-DP/OVA and MM-PLGA-DP/OVA.


Subject(s)
Cell Membrane/immunology , Coated Materials, Biocompatible , Drug Carriers , Imines , Macrophages, Peritoneal/immunology , Nanoparticles/chemistry , Polyethylenes , Polylactic Acid-Polyglycolic Acid Copolymer , Polysaccharides , Vaccines , Animals , Capsules , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Dendrobium , Drug Carriers/chemistry , Drug Carriers/pharmacology , Female , Imines/chemistry , Imines/pharmacology , Macrophages, Peritoneal/cytology , Mice , Mice, Inbred ICR , Polyethylenes/chemistry , Polyethylenes/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Vaccines/chemistry , Vaccines/pharmacology
8.
Article in English | MEDLINE | ID: mdl-32382287

ABSTRACT

BACKGROUND: Porcine parvovirus (PPV) infection-induced apoptosis was recently identified as an important pathological factor in PPV-induced placental tissue damage, resulting in reproduction failure. In the present study, we demonstrate the possible involvement of toll-like receptor (TLR) 4 and nuclear factor (NF)-κB inflammasome activation in PPV infection-induced apoptosis and the protective potential of ferulic acid (FA). PPV infection significantly activated the expression levels of TLR4, NF-κB, MyD88, and interleukin (IL)-6. However, FA ameliorated the pathological process, prevented histological alterations, and inhibited the apoptosis rate in porcine kidney (PK-15) cells infected with PPV. RESULTS: FA inhibited PPV infection-induced inflammasome activation as shown by decreases in the expression of NF-κB, MyD88, and IL-6. FA also downregulated nonstructural (NS) 1 protein expression in infected PK-15 cells. CONCLUSIONS: FA downregulated NS1 and TLR4 signaling, prevented the overproduction of reactive oxygen species, and suppressed the NF-κB inflammasome axis to inhibit PPV-induced apoptosis in PK-15 cells.

9.
Int Immunopharmacol ; 83: 106379, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32172206

ABSTRACT

Propolis from honeybee hives, which is a traditional Chinese medicine, is widely used in veterinary clinics. Many compounds have been identified and isolated from propolis. Ferulic acid (FA), one of the propolis components, previous studies have proven that it has antiviral effects. To study the mechanism of FA antiviral effects, experiments such as immunofluorescence, quantitative real-time PCR and immunoblotting were introduced. In porcine kidney (PK-15) cells, PPV infection induced the expression of the proapoptotic genes Bid, Bad, Bim and Bak, disrupted mitochondrial membrane potential, promoted mitochondria-mediated, caspase-dependent apoptotic signaling and induced apoptosis. Furthermore, the infected PK-15 cells had increased intracellular reactive oxygen species (ROS) generation. FA treatment, however, reversed these effects and increased cell viability. FA treatment also significantly decreased the PPV-induced expression of Bid, Cyt-c and Apaf-1, suggesting that ROS were involved in the activation of the mitochondria-mediated apoptosis pathway. This in vitro study showed that the antiviral activity of FA was probably associated with inhibiting the replication of PPV by blocking proapoptotic factors such as Bid, Bcl-2 and Mcl-1, and attenuating the mitochondria-mediated response by inhibiting the activation of the Bid-related signaling pathway. Pharmacological inhibitors inhibited PPV-induced apoptosis by blocking Bid, and also suppressed the expression of Caspase family proteins in ppv-induced apoptosis. Taken together, our results suggested that PPV induced PK-15 cell apoptosis via activation of Bid and Bid-related signaling pathways and that the mitochondria act as the mediators of these pathways. FA effectively and extensively attenuated this PPV action, and thus is a potential antiviral agent against PPV.


Subject(s)
Antiviral Agents/therapeutic use , Coumaric Acids/therapeutic use , Kidney/pathology , Parvoviridae Infections/drug therapy , Parvovirus, Porcine/physiology , Animals , Apoptosis , BH3 Interacting Domain Death Agonist Protein/metabolism , Cells, Cultured , Coumaric Acids/metabolism , Medicine, Chinese Traditional , Propolis/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Swine , Virus Replication/drug effects
10.
Nano Lett ; 19(10): 7514-7525, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31466449

ABSTRACT

Chemically induced dimerization (CID) has been applied to study numerous biological processes and has important pharmacological applications. However, the complex multistep interactions under various physical constraints involved in CID impose a great challenge for the quantification of the interactions. Furthermore, the mechanical stability of the ternary complexes has not been characterized; hence, their potential application in mechanotransduction studies remains unclear. Here, we report a single-molecule detector that can accurately quantify almost all key interactions involved in CID and the mechanical stability of the ternary complex, in a label-free manner. Its application is demonstrated using rapamycin-induced heterodimerization of FRB and FKBP as an example. We revealed the sufficient mechanical stability of the FKBP/rapamycin/FRB ternary complex and demonstrated its utility in the precise switching of talin-mediated force transmission in integrin-based cell adhesions.


Subject(s)
Sirolimus/pharmacology , Tacrolimus Binding Protein 1A/metabolism , Animals , Cell Line , Humans , Mechanotransduction, Cellular/drug effects , Mice , Protein Multimerization/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Tacrolimus Binding Protein 1A/chemistry
11.
Mol Biol Cell ; 30(16): 2025-2036, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31216217

ABSTRACT

Contractile arrays of actin and myosin II filaments drive many essential processes in nonmuscle cells, including migration and adhesion. Sequential organization of actin and myosin along one dimension is followed by expansion into a two-dimensional network of parallel actomyosin fibers, in which myosin filaments are aligned to form stacks. The process of stack formation has been studied in detail. However, factors that oppose myosin stack formation have not yet been described. Here, we show that tropomyosins act as negative regulators of myosin stack formation. Knockdown of any or all tropomyosin isoforms in rat embryonic fibroblasts resulted in longer and more numerous myosin stacks and a highly ordered actomyosin organization. The molecular basis for this, we found, is the competition between tropomyosin and alpha-actinin for binding actin. Surprisingly, excessive order in the actomyosin network resulted in smaller focal adhesions, lower tension within the network, and smaller traction forces. Conversely, disordered actomyosin bundles induced by alpha-actinin knockdown led to higher than normal tension and traction forces. Thus, tropomyosin acts as a check on alpha-actinin to achieve intermediate levels of myosin stacks matching the force requirements of the cell.


Subject(s)
Actinin/metabolism , Actomyosin/metabolism , Muscle Contraction , Tropomyosin/metabolism , Actin Cytoskeleton/metabolism , Animals , Biomechanical Phenomena , Fibroblasts/metabolism , Focal Adhesions/metabolism , Models, Biological , Myosin Type II/metabolism , Rats , Stress Fibers/metabolism
13.
Nat Cell Biol ; 19(2): 133-141, 2017 02.
Article in English | MEDLINE | ID: mdl-28114270

ABSTRACT

Although myosin II filaments are known to exist in non-muscle cells, their dynamics and organization are incompletely understood. Here, we combined structured illumination microscopy with pharmacological and genetic perturbations, to study the process of actomyosin cytoskeleton self-organization into arcs and stress fibres. A striking feature of the myosin II filament organization was their 'registered' alignment into stacks, spanning up to several micrometres in the direction orthogonal to the parallel actin bundles. While turnover of individual myosin II filaments was fast (characteristic half-life time 60 s) and independent of actin filament turnover, the process of stack formation lasted a longer time (in the range of several minutes) and required myosin II contractility, as well as actin filament assembly/disassembly and crosslinking (dependent on formin Fmnl3, cofilin1 and α-actinin-4). Furthermore, myosin filament stack formation involved long-range movements of individual myosin filaments towards each other suggesting the existence of attractive forces between myosin II filaments. These forces, possibly transmitted via mechanical deformations of the intervening actin filament network, may in turn remodel the actomyosin cytoskeleton and drive its self-organization.


Subject(s)
Actomyosin/metabolism , Cytoskeleton/metabolism , Muscle Contraction/physiology , Myosin Type II/metabolism , Actin Cytoskeleton/metabolism , Half-Life , Humans , Models, Biological
14.
Proc Natl Acad Sci U S A ; 112(35): 10932-7, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26290581

ABSTRACT

Epithelial (E)-cadherin-mediated cell-cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.


Subject(s)
Cadherins/metabolism , Intercellular Junctions , Biophysics , Cell Line , Cytoskeleton/metabolism , Humans , Kinetics , Lipid Bilayers , Signal Transduction
15.
Article in English | MEDLINE | ID: mdl-25815034

ABSTRACT

Objectives. The present study was conducted to evaluate the activity of nanometer propolis flavone (NPF) on inhibiting porcine parvovirus (PPV) in vitro and in vivo. Methods. In vitro, the effect of NPF on cellular infectivity of PPV was carried out before and after adding drug and simultaneous adding and PPV after being mixed. In vivo, the anti-PPV effect of NPF in guinea pigs was performed. Results. The results showed that NPF could significantly inhibit PPV infecting porcine kidney- (PK-) 15 cells compared with propolis flavone (PF), and the activity of NPF was the best in preadding drug pattern. NPF at high and medium doses was able to observably restrain PPV copying in lung, gonad, blood, and spleen, decrease the impact of PPV on weight of guinea pigs, and improve hemagglutination inhibition (HI) of PPV in serum. In addition, it could also increase the contents of IL-2 and IL-6 in serum after PPV challenge. Conclusion. These results indicated that NPF could significantly improve the anti-PPV activity of PF, and its high concentration possessed the best efficacy. Therefore, NPF would be expected to be exploited into a new-style antiviral drug.

16.
Sci Signal ; 7(354): rs7, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25468996

ABSTRACT

E-cadherin-mediated cell-cell adhesion and signaling plays an essential role in development and maintenance of healthy epithelial tissues. Adhesiveness mediated by E-cadherin is conferred by its extracellular cadherin domains and is regulated by an assembly of intracellular adaptors and enzymes associated with its cytoplasmic tail. We used proximity biotinylation and quantitative proteomics to identify 561 proteins in the vicinity of the cytoplasmic tail of E-cadherin. In addition, we used proteomics to identify proteins associated with E-cadherin-containing adhesion plaques from a cell-glass interface, which enabled the assignment of cellular localization to putative E-cadherin-interacting proteins. Moreover, by tagging identified proteins with GFP (green fluorescent protein), we determined the subcellular localization of 83 putative E-cadherin-proximal proteins and identified 24 proteins that were previously uncharacterized as part of adherens junctions. We constructed and characterized a comprehensive E-cadherin interaction network of 79 published and 394 previously uncharacterized proteins using a structure-informed database of protein-protein interactions. Finally, we found that calcium chelation, which disrupts the interaction of the extracellular E-cadherin domains, did not disrupt most intracellular protein interactions with E-cadherin, suggesting that the E-cadherin intracellular interactome is predominantly independent of cell-cell adhesion.


Subject(s)
Cadherins/metabolism , Cell Adhesion/physiology , Epithelium/growth & development , Protein Interaction Mapping/methods , Proteomics/methods , Calcium Chelating Agents/metabolism , Carbon-Nitrogen Ligases , Cell Line, Tumor , Computational Biology , Escherichia coli Proteins , Green Fluorescent Proteins/metabolism , Humans , Mass Spectrometry , Microscopy, Confocal , Repressor Proteins
17.
Biomaterials ; 33(32): 8111-21, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22898182

ABSTRACT

Aiming to aid polyamidoamine (PAMAM, generation 4, PG4) to overcome gene delivery barriers like extrinsic serum inhibition, intrinsic cytotoxicity and lysosome digestion, histidine motifs modified PAMAM was prepared. The histidine activated PAMAM generation 4 (HPG4) was synthesized via aminolysis reaction and characterized by 1H NMR spectrum and MALDI-TOF-MS. Cytotoxicity profiles of HPG4 on MD-MB-231 cells were significantly improved in the form of polymer and polymer/DNA complexes comparing to PG4. The luciferase protein expression level of HPG4 was 20-, 2.7- and 1.2- fold higher than that of PG4, SuperFect and PEI 25k. Most importantly, flow cytometry and gene transfection studies showed that histidine motifs of HPG4 not only acted as enhancer for faster cellular uptake, but also played an important role on enhancing serum tolerance of the system on cellular uptake and transfection. Among the serum concentrations of 10%-50%, HPG4 showed 10-100 folds higher transfection efficiency than PG4. Intracellular fate observation conducted by confocal microscope provided visual and quantitative evidence that endsomal escape efficiency of HPG4 system was higher than that of PG4. Lastly, the endosomal escape mechanism of HPG4 system was analyzed by endosome destabilization and proton pump inhibition treatment. Collectively, compared to PG4/pDNA, HPG4/pDNA showed improvement on cellular uptake, serum tolerance, cytotoxicity profile, and endosomal escape.


Subject(s)
DNA/administration & dosage , Dendrimers/metabolism , Histidine/metabolism , Plasmids/administration & dosage , Polyamines/metabolism , Transfection , Animals , Cell Line, Tumor , Cell Survival/drug effects , DNA/genetics , Dendrimers/chemistry , Dendrimers/toxicity , Endosomes/metabolism , Female , Histidine/chemistry , Histidine/toxicity , Humans , Luciferases, Renilla/genetics , Plasmids/genetics , Polyamines/chemistry , Polyamines/toxicity , Renilla/genetics , Serum/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
J Biomater Sci Polym Ed ; 23(1-4): 315-31, 2012.
Article in English | MEDLINE | ID: mdl-21244745

ABSTRACT

To overcome the efficiency-cytotoxicity dilemma of native PEI and incorporate the advantages of alginate, we designed a novel gene vector by grafting PEI 2000 onto alginate, an anionic polysaccharide with excellent biocompatibility. The alginate-graft-PEI (Alg-g-PEI) was successfully synthesized and then characterized by elemental analysis, (1)H-NMR and (13)C-NMR. The M(w) of Alg-g-PEI is ca. 17 000. Acid-base titration confirmed that Alg-g-PEI retained the buffering capacity of native PEI. The DNA binding ability of the polymer was confirmed by gel retardation assay. DSL analysis showed that Alg-g-PEI had a particle size and zeta-potential similar to PEI 25K. AFM detected a clear and well-shaped morphology of the complexes. Additionally, Alg-g-PEI exhibited lower cytotoxicity than PEI 25K in BEL7402, MSC and RVMSC cells. Compared with PEI 25K, Alg-g-PEI had comparable or even higher transfection efficiency. Similarly, Alg-g-PEI-mediated VEGF expression was significantly higher compared with PEI 25K-mediated VEGF expression. All together, our results suggest that Alg-g-PEI has a potential to be a safe and efficient agent for gene therapy.


Subject(s)
Alginates/chemistry , Drug Carriers/chemistry , Drug Carriers/toxicity , Polyethyleneimine/chemistry , Transfection/methods , Animals , Buffers , Cell Line, Tumor , Cell Survival/drug effects , DNA/chemistry , DNA/genetics , DNA/metabolism , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Hydrogen-Ion Concentration , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Rabbits
19.
Cell Immunol ; 270(1): 13-8, 2011.
Article in English | MEDLINE | ID: mdl-21482422

ABSTRACT

Two experiments were carried out. In immune response test, the immune enhancement of propolis, oilemulsion and aluminium salt were compared in guinea pig vaccinated with inactivated porcine parvovirus (PPV) vaccine. The result showed that three adjuvants could enhance antibody titer, T lymphocyte proliferation, IL-2 and IL-4 secretion of splenic lymphocyte. The action of propolis was similar to that of oilemulsion and superior to that of aluminium salt, especially in early period of vaccination propolis could accelerate antibody production. In immune protection test, the effects of three adjuvants on PPV infection were compared in guinea pig vaccinated with PPV vaccine then challenged with PPV. The result showed that propolis and oilemulsion could enhance the antibody titer, IL-2 and IL-4 content in serum and decrease the PPV content in blood and viscera. In the effect of improving cellular immune response, the propolis was the best. These results indicated that propolis possessed better immune enhancement and would be exploited into a effective adjuvant of inactivated vaccine.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Parvovirus, Porcine/immunology , Propolis/immunology , Vaccines, Inactivated/immunology , Adjuvants, Immunologic/chemistry , Aluminum Compounds/chemistry , Aluminum Compounds/immunology , Animals , Guinea Pigs , Interleukin-2/biosynthesis , Interleukin-2/immunology , Interleukin-4/biosynthesis , Interleukin-4/immunology , T-Lymphocytes/immunology , Vaccines, Inactivated/administration & dosage , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
20.
Int J Biol Macromol ; 47(2): 87-92, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20562020

ABSTRACT

Four prescriptions, epimedium flavone plus propolis flavone (EF-PF), epimedium flavone plus propolis extracts (EF-PE), epimedium polysaccharide plus propolis flavone (EP-PF) and epimedium polysaccharide plus propolis extracts (EP-PE), were prepared and their immune-enhancing effects were compared. In test in vitro, the effects of them on chicken peripheral lymphocyte proliferation were determined by MTT method. The results showed that EP-PF group presented the highest stimulating index at most concentrations. In immune test, 300 14-day-old chickens were randomly divided into six groups and vaccinated with ND vaccine except for blank control (BC) group, re-challenged at 28 days of age. At the same time of the first vaccination, the chickens in four experimental groups were injected, respectively, with four prescriptions. The changes of the lymphocyte proliferation and antibody titer were determined. On day 28 after the first vaccination, the chickens except for BC group were challenged with NDV, the immune protective effect was observed. The results displayed that in EP-PF group, the antibody titers, lymphocyte proliferation and protective rate were the highest, the morbidity and mortality were the lowest. In dose test, 14-day-old chickens were randomly divided into five groups. The treatment and determinations were the same as the immune test except that the chickens in experimental groups were injected, respectively, with high, medium and low doses of EP-PF. The results revealed that in medium dose group, the antibody titers, lymphocyte proliferation and protective rate were the highest, the morbidity and mortality were the lowest. These results indicated that EP and PF possessed synergistically immune enhancement, EP-PF had the best efficacy, especially at medium dose, and would be expected to exploit into a new-type immunopotentiator.


Subject(s)
Epimedium/chemistry , Flavones/immunology , Lymphocytes/cytology , Newcastle disease virus/immunology , Polysaccharides/immunology , Propolis/immunology , Viral Vaccines/immunology , Adjuvants, Immunologic/pharmacology , Animals , Antibodies/immunology , Cell Proliferation/drug effects , Chickens , Dose-Response Relationship, Immunologic , Drug Synergism , Drugs, Chinese Herbal/pharmacology , Lymphocytes/immunology , Male , Phytohemagglutinins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...