Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Synth Syst Biotechnol ; 9(4): 701-712, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38868608

ABSTRACT

Digitoxose, a significant 2,6-dideoxyhexose found in nature, exists in many small-molecule natural products. These digitoxose-containing natural products can be divided into steroids, macrolides, macrolactams, anthracyclines, quinones, enediynes, acyclic polyene, indoles and oligosaccharides, that exhibit antibacterial, anti-viral, antiarrhythmic, and antitumor activities respectively. As most of digitoxose-containing natural products for clinical application or preclinical tests, this review also summarizes the biosynthesis of digitoxose, and application of compound diversification by introducing sugar plasmids. It may provide a practical approach to expanding the diversity of digitoxose-containing products.

2.
Cell Host Microbe ; 32(2): 276-289.e7, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38215741

ABSTRACT

Bacterial persisters, a subpopulation of genetically susceptible cells that are normally dormant and tolerant to bactericides, have been studied extensively because of their clinical importance. In comparison, much less is known about the determinants underlying fungicide-tolerant fungal persister formation in vivo. Here, we report that during mouse lung infection, Cryptococcus neoformans forms persisters that are highly tolerant to amphotericin B (AmB), the standard of care for treating cryptococcosis. By exploring stationary-phase indicator molecules and developing single-cell tracking strategies, we show that in the lung, AmB persisters are enriched in cryptococcal cells that abundantly produce stationary-phase molecules. The antioxidant ergothioneine plays a specific and key role in AmB persistence, which is conserved in phylogenetically distant fungi. Furthermore, the antidepressant sertraline (SRT) shows potent activity specifically against cryptococcal AmB persisters. Our results provide evidence for and the determinant of AmB-tolerant persister formation in pulmonary cryptococcosis, which has potential clinical significance.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Fungicides, Industrial , Pneumonia , Animals , Mice , Amphotericin B/pharmacology , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Cryptococcosis/drug therapy , Cryptococcosis/microbiology , Fungicides, Industrial/pharmacology , Pneumonia/drug therapy , Pneumonia/microbiology
3.
Eur J Med Chem ; 266: 116148, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38237344

ABSTRACT

Oxidative stress and inflammation responses are closely related to the occurrence and development of many diseases. Therefore, anti-oxidation and anti-inflammation have become hot spots in the treatment of diseases. A series of novel resveratrol derivatives which hybrid with benzoylhydrazines were designed, synthesized and assessed for their in vitro antioxidant and anti-inflammatory activity. Initially, the antioxidant abilities of resveratrol derivatives were investigated by DPPH, ABTS radical scavenging and FRAP assays. RAW 264.7 macrophages are routinely used to evaluate the antioxidant and anti-inflammatory activities of drugs, so we used it to construct cell models of oxidative stress and inflammation. Among all the derivatives, compound 5 exhibited superior ROS- and NO-inhibitory activities. The molecular mechanism detected by Western blotting showed that compound 5 could significantly activate the Nrf2 signaling pathway and up-regulate the expression of HO-1 to resist oxidative stress stimulated by H2O2. At the same time, it could down-regulate the expression of apoptosis-related proteins Caspase3 and PARP, alleviating cells damage and apoptosis. In addition, compound 5 dose-dependently inhibited the activation of NF-κB p65/iNOS and MAPKs signaling pathway.


Subject(s)
Antioxidants , Hydrogen Peroxide , Mice , Animals , Humans , Antioxidants/therapeutic use , Resveratrol/pharmacology , Resveratrol/therapeutic use , Hydrogen Peroxide/pharmacology , NF-kappa B/metabolism , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Oxidative Stress , Lipopolysaccharides/pharmacology , NF-E2-Related Factor 2/metabolism
4.
BMC Genomics ; 24(1): 766, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087211

ABSTRACT

BACKGROUND: Sea cucumbers exhibit a remarkable ability to regenerate damaged or lost tissues and organs, making them an outstanding model system for investigating processes and mechanisms of regeneration. They can also reproduce asexually by transverse fission, whereby the anterior and posterior bodies can regenerate independently. Despite the recent focus on intestinal regeneration, the molecular mechanisms underlying body wall regeneration in sea cucumbers still remain unclear. RESULTS: In this study, transverse fission was induced in the tropical sea cucumber, Holothuria leucospilota, through constrainment using rubber bands. Histological examination revealed the degradation and loosening of collagen fibers on day-3, followed by increased density but disorganization of the connective tissue on day-7 of regeneration. An Illumina transcriptome analysis was performed on the H. leucospilota at 0-, 3- and 7-days after artificially induced fission. The differential expression genes were classified and enriched by GO terms and KEGG database, respectively. An upregulation of genes associated with extracellular matrix remodeling was observed, while a downregulation of pluripotency factors Myc, Klf2 and Oct1 was detected, although Sox2 showed an upregulation in expression. In addition, this study also identified progressively declining expression of transcription factors in the Wnt, Hippo, TGF-ß, and MAPK signaling pathways. Moreover, changes in genes related to development, stress response, apoptosis, and cytoskeleton formation were observed. The localization of the related genes was further confirmed through in situ hybridization. CONCLUSION: The early regeneration of H. leucospilota body wall is associated with the degradation and subsequent reconstruction of the extracellular matrix. Pluripotency factors participate in the regenerative process. Multiple transcription factors involved in regulating cell proliferation were found to be gradually downregulated, indicating reduced cell proliferation. Moreover, genes related to development, stress response, apoptosis, and cell cytoskeleton formation were also involved in this process. Overall, this study provides new insights into the mechanisms of whole-body regeneration and uncover potential cross-species regenerative-related genes.


Subject(s)
Holothuria , Sea Cucumbers , Animals , Sea Cucumbers/genetics , Holothuria/genetics , Regeneration/genetics , Gene Expression Profiling , Transcription Factors/genetics
5.
Acta Pharm Sin B ; 13(2): 765-774, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36873169

ABSTRACT

l-Heptopyranoses are important components of bacterial polysaccharides and biological active secondary metabolites like septacidin (SEP), which represents a group of nucleoside antibiotics with antitumor, antifungal, and pain-relief activities. However, little is known about the formation mechanisms of those l-heptose moieties. In this study, we deciphered the biosynthetic pathway of the l,l-gluco-heptosamine moiety in SEPs by functional characterizing four genes and proposed that SepI initiates the process by oxidizing the 4'-hydroxyl of l-glycero-α-d-manno-heptose moiety of SEP-328 (2) to a keto group. Subsequently, SepJ (C5 epimerase) and SepA (C3 epimerase) shape the 4'-keto-l-heptopyranose moiety by sequential epimerization reactions. At the last step, an aminotransferase SepG installs the 4'-amino group of the l,l-gluco-heptosamine moiety to generate SEP-327 (3). An interesting phenomenon is that the SEP intermediates with 4'-keto-l-heptopyranose moieties exist as special bicyclic sugars with hemiacetal-hemiketal structures. Notably, l-pyranose is usually converted from d-pyranose by bifunctional C3/C5 epimerase. SepA is an unprecedented monofunctional l-pyranose C3 epimerase. Further in silico and experimental studies revealed that it represents an overlooked metal dependent-sugar epimerase family bearing vicinal oxygen chelate (VOC) architecture.

6.
Chin J Nat Med ; 20(11): 873-880, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36427921

ABSTRACT

Natural cyclohexapeptide AFN A1 fromStreptomyces alboflavus 313 has moderate antibacterial and antitumor activities. An artificial designed AFN A1 homodimer, di-AFN A1, is an antibiotic exhibiting 10 to 150 fold higher biological activities, compared with the monomer. Unfortunately, the yield of di-AFN A1 is very low (0.09 ± 0.03 mg·L-1) in the engineered strain Streptomyces alboflavus 313_hmtS (S. albo/313_hmtS), which is not friendly to be genetically engineered for titer improvement of di-AFN A1 production. In this study, we constructed a biosynthetic gene cluster for di-AFN A1 and increased its production through heterologous expression. During the collection of di-AFN A1 biosynthetic genes, the afn genes were located at three sites of S. alboflavus 313 genome. The di-AFN A1 biosynthetic gene cluster (BGC) was first assembled on one plasmid and introduced into the model strain Streptomyces lividans TK24, which produced di-AFN A1 at a titer of 0.43 ± 0.01 mg·L-1. To further increase the yield of di-AFN A1, the di-AFN A1 BGC was multiplied and split to mimic the natural afn biosynthetic genes, and the production of di-AFN A1 increased to 0.62 ± 0.11 mg·L-1 in S. lividans TK24 by the later strategy. Finally, different Streptomyces hosts were tested and the titer of di-AFN A1 increased to 0.81 ± 0.17 mg·L-1, about 8.0-fold higher than that in S. albo/313_hmtS. Successful heterologous expression of di-AFN A1 with a remarkable increased titer will greatly facilitate the following synthetic biological study and drug development of this dimeric cyclohexapeptide.


Subject(s)
Streptomyces , Cloning, Molecular , Streptomyces/genetics , Streptomyces/metabolism , Multigene Family , Anti-Bacterial Agents/metabolism , Plasmids/genetics
7.
Nat Biotechnol ; 40(6): 921-931, 2022 06.
Article in English | MEDLINE | ID: mdl-35241840

ABSTRACT

The human gut microbiome encodes a large variety of antimicrobial peptides (AMPs), but the short lengths of AMPs pose a challenge for computational prediction. Here we combined multiple natural language processing neural network models, including LSTM, Attention and BERT, to form a unified pipeline for candidate AMP identification from human gut microbiome data. Of 2,349 sequences identified as candidate AMPs, 216 were chemically synthesized, with 181 showing antimicrobial activity (a positive rate of >83%). Most of these peptides have less than 40% sequence homology to AMPs in the training set. Further characterization of the 11 most potent AMPs showed high efficacy against antibiotic-resistant, Gram-negative pathogens and demonstrated significant efficacy in lowering bacterial load by more than tenfold against a mouse model of bacterial lung infection. Our study showcases the potential of machine learning approaches for mining functional peptides from metagenome data and accelerating the discovery of promising AMP candidate molecules for in-depth investigations.


Subject(s)
Deep Learning , Gastrointestinal Microbiome , Adenosine Monophosphate , Animals , Anti-Bacterial Agents/chemistry , Antimicrobial Peptides , Humans , Mice , Peptides/chemistry , Peptides/pharmacology
8.
J Antibiot (Tokyo) ; 75(3): 172-175, 2022 03.
Article in English | MEDLINE | ID: mdl-35082443

ABSTRACT

Septacidin is an adenine nucleoside antibiotic with antifungal and antitumor activities. During the efforts to construct a better septacidin producer, we obtained a high yield strain S. albus 1597 by putting the biosynthetic gene cluster (BGC) of septacidin under the control of the constitutive strong promoter ermE*. S. albus 1597 could produce new septacidin congeners SEP-538 and SEP-552 with shorter fatty acyl chains. Moreover, SEP-624 with an unprecedented hydroxylated fatty acyl chain was also isolated from this titre improved strain, enriching the diversity of septacidins. SEP-552 showed moderate inhibitory effects against Epidermophyton floccosum 57312 with MIC value 62.5 µM, while SEP-538 and SEP-624 only exhibited weak antifungal activities. The structure-activity relationship investigation revealed that the antifungal activity of septacidins is significantly influenced by the length of and the decoration on their fatty acyl chains.


Subject(s)
Streptomyces/genetics , Anti-Bacterial Agents/biosynthesis , Epidermophyton/genetics , Multigene Family/genetics , Purine Nucleosides/genetics , Streptomyces griseus/genetics
9.
Nat Commun ; 12(1): 4499, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34301953

ABSTRACT

Aurantinins (ARTs) are antibacterial polyketides featuring a unique 6/7/8/5-fused tetracyclic ring system and a triene side chain with a carboxyl terminus. Here we identify the art gene cluster and dissect ART's C-methyl incorporation patterns to study its biosynthesis. During this process, an apparently redundant methyltransferase Art28 was characterized as a malonyl-acyl carrier protein O-methyltransferase, which represents an unusual on-line methyl esterification initiation strategy for polyketide biosynthesis. The methyl ester bond introduced by Art28 is kept until the last step of ART biosynthesis, in which it is hydrolyzed by Art9 to convert inactive ART 9B to active ART B. The cryptic reactions catalyzed by Art28 and Art9 represent a protecting group biosynthetic logic to render the ART carboxyl terminus inert to unwanted side reactions and to protect producing organisms from toxic ART intermediates. Further analyses revealed a wide distribution of this initiation strategy for polyketide biosynthesis in various bacteria.


Subject(s)
Acyl Carrier Protein/metabolism , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Methyltransferases/metabolism , Polyketides/metabolism , Acyl Carrier Protein/genetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Biosynthetic Pathways/genetics , Esterification , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Methyltransferases/genetics , Microbial Sensitivity Tests/methods , Models, Chemical , Molecular Structure , Multigene Family , Polyenes/chemistry , Polyenes/metabolism , Polyenes/pharmacology , Polyketides/chemistry , Polyketides/pharmacology
10.
Nat Prod Rep ; 38(10): 1887-1909, 2021 10 20.
Article in English | MEDLINE | ID: mdl-33704304

ABSTRACT

Covering: up to 2020Glycosylated natural products hold great potential as drugs for the treatment of human and animal diseases. Heptoses, known as seven-carbon-chain-containing sugars, are a group of saccharides that are rarely observed in natural products. Based on the structures of the heptoses, the heptose-containing natural products can be divided into four groups, characterized by heptofuranose, highly-reduced heptopyranose, D-heptopyranose, and L-heptopyranose. Many of them possess remarkable biological properties, including antibacterial, antifungal, antitumor, and pain relief activities, thereby attracting great interest in biosynthesis and chemical synthesis studies to understand their construction mechanisms and structure-activity relationships. In this review, we summarize the structural properties, biological activities, and recent progress in the biosynthesis of bacterial natural products featuring seven-carbon-chain-containing sugars. The biosynthetic origins of the heptose moieties are emphasized.


Subject(s)
Bacteria/metabolism , Biological Products/metabolism , Heptoses/biosynthesis , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Heptoses/chemistry , Heptoses/isolation & purification , Heptoses/pharmacology
11.
Front Microbiol ; 12: 641025, 2021.
Article in English | MEDLINE | ID: mdl-33664724

ABSTRACT

As methicillin-resistant Staphylococcus aureus (MRSA) is becoming a serious pathogenic threaten to human health worldwide, there is an urgent need to discover new antibiotics for the treatment of MRSA infections. Alboflavusins (AFNs) are a group of halogenated cyclohexapeptides with anti-MRSA activities. In this study, two novel brominated AFN congeners (compounds 1 and 2) were isolated from the wild-type strain Streptomyces alboflavus sp. 313 that was fermented in the production medium supplemented with NaBr; two new (compounds 3 and 5) and a known (compound 4) dehelogenated AFN congeners were isolated from S. alboflavus ΔafnX, in which the tryptophan halogenase gene afnX was inactivated. The structures of these compounds were assigned by careful NMR and MS analyses. The anti-MRSA activities of varied AFN congeners were assessed against different MRSA strains, which revealed that compounds 1 and 2 with bromine displayed effective activities against the tested MRSA strains. Especially, compound 2 showed good anti-MRSA activity, while compounds 3, 4, and 5 without halogen exhibited weak anti-MRSA activities, outlining the influence of halogen substitution to the bioactivities of AFNs.

12.
Anal Methods ; 13(5): 636-641, 2021 02 07.
Article in English | MEDLINE | ID: mdl-33491682

ABSTRACT

This work presents a novel and green analytical procedure involving a deep eutectic solvent-based dispersive liquid-liquid microextraction with solidification of floating organic droplets (DES-DLLME-SFOD) followed by HPLC to measure three pyrethroids (bifenthrin, ß-cypermethrin, and deltamethrin) in cereal samples. Firstly, a low-density hydrophobic DES was synthesized from thymol and octanoic acid in the molar ratio of 1/4 and this was applied as a green extraction solvent in the DLLME procedure to avoid the use of a toxic extractant. After centrifugation and placing it on an ice bath, it is transformed into a solid phase on the top of the sample solution to reduce the loss of extractant, conducive to convenient collection thereafter. This procedure required the optimal conditions (including the type, proportion, and amount of DES as the extractant, the volume of the dispersant acetonitrile, the amount of salt, and the pH value) to be evaluated. Under optimized variates, the proposed method provided good linearity with a correlation coefficient greater than 0.997 and limits of quantification within the range of 6.6-8.9 µg kg-1. The recoveries of pyrethroids in corn, wheat, barley, and oats were 75.6-87.2%, and the relative standard deviation was less than 3.6%. The method, therefore, offers a green, efficient, and convenient approach for the determination of pesticides in cereals.


Subject(s)
Liquid Phase Microextraction , Pyrethrins , Chromatography, High Pressure Liquid , Edible Grain , Solvents
13.
J Nat Prod ; 83(10): 3199-3206, 2020 10 23.
Article in English | MEDLINE | ID: mdl-32970428

ABSTRACT

Avermectin (AVM) refers to eight macrolides containing a common l-oleandrosyl disaccharide chain indispensable to their antiparasitic bioactivities. We delineated the biosynthetic pathway of TDP-ß-l-oleandrose (1), the sugar donor of AVM, by characterizing AveBVIII, AveBV, and AveBVII as TDP-sugar 3-ketoreductase, 5-epimerase, and 3-O-methyltransferase, respectively. On the basis of this pathway, we successfully reconstituted the biosynthesis of 1 in Escherichia coli. Our work completes the biosynthetic pathway of AVM and lays a solid foundation for further studies.


Subject(s)
Deoxy Sugars/biosynthesis , Hexoses/biosynthesis , Ivermectin/analogs & derivatives , Anti-Bacterial Agents , Computational Biology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Escherichia coli/enzymology , Escherichia coli/metabolism , Ivermectin/chemical synthesis , Methyltransferases/metabolism , Molecular Structure , UDPglucose 4-Epimerase/metabolism
14.
Org Lett ; 22(13): 5251-5254, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32567317

ABSTRACT

Septacidin (1) represents a group of nucleoside antibiotics possessing a unique N6-glycosylated adenine core. They exhibit some fascinating bioactivities that are rare for other nucleoside antibiotics. Here we demonstrate that this unique structure in septacidin is formed by SepE and SepF. SepE is an unprecedented Fe(II)-dependent glycosyltransferase decorating the N6-position of AMP using ADP-l-glycero-ß-d-manno-heptose (6) as a sugar donor. The Fe(II) may help SepE to bind AMP. SepF is an unusual glycosidase that detaches the N9-ribosyl-5-phosphate.


Subject(s)
Adenine/chemistry , Glycoside Hydrolases/metabolism , Glycosylation , Purine Nucleosides/biosynthesis , Purine Nucleosides/chemistry
15.
Appl Microbiol Biotechnol ; 104(4): 1695-1705, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31900559

ABSTRACT

The interspecies communication roles of γ-butyrolactones (GBLs) have been described for a long time but are still poorly understood. Herein, we analyzed more than 1000 Streptomyces strains and noticed a big quantitative gap between the strains with GBL biosynthetic genes and the strains with GBL receptor genes, which implies the wide-spread of GBLs as interspecies signals in Streptomyces and their great potential in the activation of silent natural product gene clusters. Streptomyces albidoflavus J1074, which has one GBL receptor gene but no GBL biosynthetic gene, was chosen as a target to study the possible interspecies communication roles of GBLs. At first, the GBL biosynthetic genes from Streptomyces coelicolor M145 were expressed in S. albidoflavus J1074, which enabled the S. albidoflavus strains to synthesize Streptomyces coelicolor butanolides (SCBs) and activated the production of paulomycins. Further studies showed that this activation process requires the participation of the GBL receptor gene XNR_4681. The results suggest that the expression of exogenous GBL biosynthetic genes can modulate the metabolisms of GBL non-producing strains, and this regulation role might be meaningful for silent gene cluster activation in Streptomyces. At final, we synthesized racemic-SCB2 and tried to simplify the activation process by adding SCB2 directly to S. albidoflavus J1074, which unfortunately failed to induce paulomycin production.


Subject(s)
Lactones/pharmacology , Streptomyces/drug effects , Streptomyces/metabolism , Biosynthetic Pathways , Disaccharides/biosynthesis , Multigene Family , Streptomyces coelicolor/genetics
16.
Org Lett ; 22(3): 960-964, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31917593

ABSTRACT

Mutanobactins (MUBs) and their congeners that contain a macrocycle and/or a thiazepane ring are lipopeptides from Streptococcus mutans, a major causative agent of dental caries. Here we show that the C-terminal reductase domain of MubD releases the lipohexapeptide intermediates in an aldehyde form, which enables a spontaneous C-C macrocyclization. In the presence of a thiol group, the macrocyclized MUBs can further undergo spontaneous C-S bond formation and C-C bond cleavage to generate diverse MUB congeners.


Subject(s)
Lipopeptides/biosynthesis , Oxidoreductases/metabolism , Peptides, Cyclic/biosynthesis , Cyclization , Lipopeptides/chemistry , Molecular Structure , Oxidoreductases/chemistry , Peptides, Cyclic/chemistry , Stereoisomerism
17.
Nat Commun ; 10(1): 3665, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31413323

ABSTRACT

Anaerobic bacteria represent an overlooked rich source of biological and chemical diversity. Due to the challenge of cultivation and genetic intractability, assessing the capability of their biosynthetic gene clusters (BGCs) for secondary metabolite production requires an efficient heterologous expression system. However, this kind of host system is still unavailable. Here, we use the facultative anaerobe Streptococcus mutans UA159 as a heterologous host for the expression of BGCs from anaerobic bacteria. A natural competence based large DNA fragment cloning (NabLC) technique was developed, which can move DNA fragments up to 40-kb directly and integrate a 73.7-kb BGC to the genome of S. mutans UA159 via three rounds of NabLC cloning. Using this system, we identify an anti-infiltration compound, mutanocyclin, from undefined BGCs from human oral bacteria. We anticipate this host system will be useful for heterologous expression of BGCs from anaerobic bacteria.


Subject(s)
Bacteria, Anaerobic/genetics , Biosynthetic Pathways/genetics , Cloning, Molecular/methods , Multigene Family/genetics , Streptococcus mutans/genetics , Humans , Microbiota/genetics , Mouth , Peptides , Polyketides , Terpenes
18.
J Am Chem Soc ; 140(51): 18009-18015, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30516971

ABSTRACT

Alboflavusins (AFNs) are a group of cyclohexapeptides with moderate antibacterial and antitumor activities from Streptomyces alboflavus sp. 313. In vivo and in vitro studies proposed that AFNs are biosynthesized by a nonribosomal peptide synthetase machinery, and the 6-Cl-L-Trp precursor is supplied by a tryptophan halogenase gene located outside the afn gene cluster. Guided by the structure-activity relationship knowledge about the AFN-like cyclohexapeptides, two dimeric AFNs (di-AFNs) with regiospecific biaryl linkages were designed and generated biotechnologically by expressing the P450 gene hmtS or clpS in S. alboflavus wild-type and mutant strains. The di-AFNs displayed much better antibacterial and antitumor activities than their monomers as anticipated, exemplifying a rational strategy to generate natural product congeners with improved bioactivities.

19.
Synth Syst Biotechnol ; 3(4): 254-260, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30417141

ABSTRACT

Along with the fast developing of DNA sequencing technology, a great number of natural product biosynthetic gene clusters have been discovered by bioinformatic analysis, which demands novel high-throughput genome mining methods to obtain the diverse compounds dictated by those gene clusters. In this work, a method based on the reporter gene xylE was established to screen for the activation conditions of thirteen different gene clusters from Streptomyces lavendulae CGMCC 4.1386. In this reporter-guided method, the key structure gene was replaced by a xylE-kana R cassette with the xylE gene being controlled by the transcription and translation machinery of the key structure gene. It not only facilitated the screening of activation conditions, but also provided the null mutants of specific natural product gene clusters as controls to link those clusters with their products conveniently. The potential activation conditions of eleven gene clusters from S. lavendulae CGMCC 4.1386 were obtained. In addition, activation of three of the eleven gene clusters was confirmed and their products were identified.

20.
J Nat Prod ; 81(9): 2069-2074, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30178674

ABSTRACT

Seven pradimicin-like polyketides were isolated from the dichloromethane extract of the marine sediment-derived Streptosporangium sp. CGMCC 4.7309, including five new hexaricins, D-H (1-5), and known hexaricins A (6) and C (7). Their structures were determined by HRESIMS, 1D and 2D NMR, and other spectroscopic analyses. The absolute configurations of compounds 1-5 were determined on the basis of circular dichroism and specific rotation data. All isolated compounds 1-7 were tested for their antioxidant capacities by DPPH• scavenging, •OH scavenging, and •O2̅ scavenging assays. Compounds 3 and 4 displayed stronger antioxidant activities than the positive control ( tert-butylhydroquinone). The relationship between structure and antioxidant activity is discussed. These compounds could be effective natural antioxidants with considerable pharmaceutical value.


Subject(s)
Actinobacteria/metabolism , Antioxidants/pharmacology , Geologic Sediments/microbiology , Polyketides/isolation & purification , Magnetic Resonance Spectroscopy , Polyketides/chemistry , Polyketides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...