Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5314, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38906879

ABSTRACT

The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.

2.
Open Med (Wars) ; 19(1): 20240940, 2024.
Article in English | MEDLINE | ID: mdl-38584824

ABSTRACT

Objective: We applied Mendelian randomization to explore the causal relationship between obesity and benign paroxysmal vertigo (BPV). Methods: We chose two types of obesity diseases. Obesity due to excessive calories and other or unspecified obesity from the FinnGen database. We used genomic significance (p < 5 × 10-8) to obtain independent single nucleotide polymorphisms (SNPs) as instrumental variables. Similarly, genome-wide association study data for the disease BPV were selected from the FinnGen database. R was then used to test the data for multiplicity and heterogeneity, as well as to detect the effect of individual SNPs on the results. Random effects inverse variance weighting was used as the main statistical analysis. Results: First, by analyzing, we found an outlier in obesity due to excessive calories (rs12956821). Outliers were then removed, and the statistical results were analyzed without heterogeneity (p > 0.05) and horizontal pleiotropy (p > 0.05), as well as individual SNPs having no effect on the results. Meanwhile, random-effects IVW results showed obesity due to excessive calories (p = 0.481; OR = 0.941), and other or unspecified obesity (p = 0.640; OR = 0.964). Conclusions: The present study did not find a causal relationship between the above two obesity types and BPV at the genetic level.

3.
Water Res ; 250: 121063, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38171176

ABSTRACT

Upcycling nickel (Ni) to useful catalyst is an appealing route to realize low-carbon treatment of electroplating wastewater and simultaneously recovering Ni resource, but has been restricted by the needs for costly membranes or consumption of large amount of chemicals in the existing upcycling processes. Herein, a biological upcycling route for synchronous recovery of Ni and sulfate as electrocatalysts, with certain amount of ferric salt (Fe3+) added to tune the product composition, is proposed. Efficient biosynthesis of bio-NiFeS nanoparticles from electroplating wastewater was achieved by harnessing the sulfate reduction and metal detoxification ability of Desulfovibrio vulgaris. The optimal bio-NiFeS, after further annealing at 300 °C, served as an efficient oxygen evolution electrocatalyst, achieving a current density of 10 mA·cm-1 at an overpotential of 247 mV and a Tafel slope of 60.2 mV·dec-1. It exhibited comparable electrocatalytic activity with the chemically-synthesized counterparts and outperformed the commercial RuO2. The feasibility of the biological upcycling approach for treating real Ni-containing electroplating wastewater was also demonstrated, achieving 99.5 % Ni2+removal and 41.0 % SO42- removal and enabling low-cost fabrication of electrocatalyst. Our work paves a new path for sustainable treatment of Ni-containing wastewater and may inspire technology innovations in recycling/ removal of various metal ions.


Subject(s)
Nickel , Wastewater , Nickel/chemistry , Electroplating , Sulfates , Ferric Compounds/chemistry
4.
Water Res ; 250: 121055, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38159544

ABSTRACT

Low-pressure catalytic membranes allow efficient rejection of particulates and simultaneously removing organics pollutant in water, but the accumulation of dissolved organic matters (DOM) on membrane surface, which cover the catalytic sites and cause membrane fouling, challenges their stable operation in practical wastewater treatment. Here we propose a ferric salt-based coagulation/co-catalytic membrane integrated system that can effectively mitigate the detrimental effects of DOM. Ferric salt (Fe3+) serving both as a DOM coagulant to lower the membrane fouling and as a co-catalyst with the membrane-embedded MoS2 nanosheets to drive perxymonosulfate (PMS) activation and pollutant degradation. The membrane functionalized with 2H-phased MoS2 nanosheets showed improved hydrophilicity and fouling resistance relative to the blank polysulfone membrane. Attributed to the DOM coagulation and co-catalytic generation of surface-bound radicals for decontamination at membrane surface, the catalytic membrane/PMS/ Fe3+ system showed much less membrane fouling and 2.6 times higher pollutant degradation rate in wastewater treatment than the catalytic membrane alone. Our work imply a great potential of coagulation/co-catalytic membrane integrated system for water purification application.


Subject(s)
Environmental Pollutants , Water Purification , Molybdenum , Membranes, Artificial , Iron , Dissolved Organic Matter
5.
Proc Natl Acad Sci U S A ; 120(15): e2220608120, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37018199

ABSTRACT

A precise modulation of heterogeneous catalysts in structural and surface properties promises the development of more sustainable advanced oxidation water purification technologies. However, while catalysts with superior decontamination activity and selectivity are already achievable, maintaining a long-term service life of such materials remains challenging. Here, we propose a crystallinity engineering strategy to break the activity-stability tradeoff of metal oxides in Fenton-like catalysis. The amorphous/crystalline cobalt-manganese spinel oxide (A/C-CoMnOx) provided highly active, hydroxyl group-rich surface, with moderate peroxymonosulfate (PMS)-binding affinity and charge transfer energy and strong pollutant adsorption, to trigger concerted radical and nonradical reactions for efficient pollutant mineralization, thereby alleviating the catalyst passivation by oxidation intermediate accumulation. Meanwhile, the surface-confined reactions, benefited from the enhanced adsorption of pollutants at A/C interface, rendered the A/C-CoMnOx/PMS system ultrahigh PMS utilization efficiency (82.2%) and unprecedented decontamination activity (rate constant of 1.48 min-1) surpassing almost all the state-of-the-art heterogeneous Fenton-like catalysts. The superior cyclic stability and environmental robustness of the system for real water treatment was also demonstrated. Our work unveils a critical role of material crystallinity in modulating the Fenton-like catalytic activity and pathways of metal oxides, which fundamentally improves our understanding of the structure-activity-selectivity relationships of heterogeneous catalysts and may inspire material design for more sustainable water purification application and beyond.

6.
Adv Mater ; 34(50): e2206994, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36222376

ABSTRACT

The nucleation pathway determines the structures and thus properties of formed nanomaterials, which is governed by the free energy of the intermediate phase during nucleation. The amorphous structure, as one of the intermediate phases during nucleation, plays an important role in modulating the nucleation pathway. However, the process and mechanism of crystal nucleation from amorphous structures still need to be fully investigated. Here, in situ aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) is employed to conduct real-time imaging of the nucleation of ultrathin amorphous nanosheets (NSs). The results indicate that their nucleation contains three distinct stages, i.e., aggregation of atoms, crystallization to form lattice-expanded nanocrystals, and relaxation of the lattice-expanded nanocrystals to form final nanocrystals. In particular, the crystallization processes of various amorphous materials are investigated systematically to form corresponding nanocrystals with unconventional crystalline phases, including face-centered-cubic (fcc) Ru, hexagonal-close-packed (hcp) Rh, and a new intermetallic IrCo alloy. In situ electron energy-loss spectroscopy (EELS) analysis unveils that the doped carbon in the original amorphous NSs can migrate to the surface during the nucleation process, stabilizing the obtained unconventional crystal phases transformed from the amorphous structures, which is also proven by density functional theory (DFT) calculations.

7.
Proc Natl Acad Sci U S A ; 119(31): e2201607119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35878043

ABSTRACT

Nonradical Fenton-like catalysis offers opportunities to overcome the low efficiency and secondary pollution limitations of existing advanced oxidation decontamination technologies, but realizing this on transition metal spinel oxide catalysts remains challenging due to insufficient understanding of their catalytic mechanisms. Here, we explore the origins of catalytic selectivity of Fe-Mn spinel oxide and identify electron delocalization of the surface metal active site as the key driver of its nonradical catalysis. Through fine-tuning the crystal geometry to trigger Fe-Mn superexchange interaction at the spinel octahedra, ZnFeMnO4 with high-degree electron delocalization of the Mn-O unit was created to enable near 100% nonradical activation of peroxymonosulfate (PMS) at unprecedented utilization efficiency. The resulting surface-bound PMS* complex can efficiently oxidize electron-rich pollutants with extraordinary degradation activity, selectivity, and good environmental robustness to favor water decontamination applications. Our work provides a molecule-level understanding of the catalytic selectivity and bimetallic interactions of Fe-Mn spinel oxides, which may guide the design of low-cost spinel oxides for more selective and efficient decontamination applications.


Subject(s)
Electrons , Oxides , Catalysis , Magnesium Oxide/chemistry , Oxides/chemistry , Peroxides/chemistry
8.
Nat Commun ; 13(1): 3005, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637224

ABSTRACT

Removal of organic micropollutants from water through advanced oxidation processes (AOPs) is hampered by the excessive input of energy and/or chemicals as well as the large amounts of residuals resulting from incomplete mineralization. Herein, we report a new water purification paradigm, the direct oxidative transfer process (DOTP), which enables complete, highly efficient decontamination at very low dosage of oxidants. DOTP differs fundamentally from AOPs and adsorption in its pollutant removal behavior and mechanisms. In DOTP, the nanocatalyst can interact with persulfate to activate the pollutants by lowering their reductive potential energy, which triggers a non-decomposing oxidative transfer of pollutants from the bulk solution to the nanocatalyst surface. By leveraging the activation, stabilization, and accumulation functions of the heterogeneous catalyst, the DOTP can occur spontaneously on the nanocatalyst surface to enable complete removal of pollutants. The process is found to occur for diverse pollutants, oxidants, and nanocatalysts, including various low-cost catalysts. Significantly, DOTP requires no external energy input, has low oxidant consumption, produces no residual byproducts, and performs robustly in real environmental matrices. These favorable features render DOTP an extremely promising nanotechnology platform for water purification.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Decontamination , Oxidants , Water
9.
Environ Sci Technol ; 56(1): 564-574, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34918924

ABSTRACT

Recycling of deactivated palladium (Pd)-based catalysts can not only lower the economic cost of their industrial use but also save the cost for waste disposal. Considering that the sulfur-poisoned Pd (PdxSy) with a strong Pd-S bond is difficult to regenerate, here, we propose a direct reuse of such waste materials as an efficient catalyst for decontamination via Fenton-like processes. Among the PdxSy materials with different poisoning degrees, Pd4S stood out as the most active catalyst for peroxymonosulfate activation, exhibiting pollutant-degradation performance rivaling the Pd and Co2+ benchmarks. Moreover, the incorporated S atom was found to tune the surface electrostatic potentials and charge densities of the Pd active site, triggering a shift in catalytic pathway from surface-bound radicals to predominantly direct electron transfer pathway that favors a highly selective oxidation of phenols. The catalyst stability was also improved due to the formation of strong Pd-S bond that reduces corrosion. Our work paves a new way for upcycling of Pd-based industrial wastes and for guiding the development of advanced oxidation technologies toward higher sustainability.


Subject(s)
Environmental Pollutants , Poisons , Catalysis , Oxidation-Reduction , Palladium/chemistry , Phenols , Sulfur
10.
Angew Chem Int Ed Engl ; 60(1): 274-280, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-32965786

ABSTRACT

Transition metal (TM)-based bimetallic spinel oxides can efficiently activate peroxymonosulfate (PMS) presumably attributed to enhanced electron transfer between TMs, but the existing model cannot fully explain the efficient TM redox cycling. Here, we discover a critical role of TM-O covalency in governing the intrinsic catalytic activity of Co3-x Mnx O4 spinel oxides. Experimental and theoretical analysis reveals that the Co sites significantly raises the Mn valence and enlarges Mn-O covalency in octahedral configuration, thereby lowering the charge transfer energy to favor MnOh -PMS interaction. With appropriate MnIV /MnIII ratio to balance PMS adsorption and MnIV reduction, the Co1.1 Mn1.9 O4 exhibits remarkable catalytic activities for PMS activation and pollutant degradation, outperforming all the reported TM spinel oxides. The improved understandings on the origins of spinel oxides activity for PMS activation may inspire the development of more active and robust metal oxide catalysts.

11.
J AOAC Int ; 104(5): 1408-1414, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-33201229

ABSTRACT

BACKGROUND: The simultaneous analysis of several anions and carbohydrates by one-dimensional chromatography with a single detector is often complicated by the presence of overlapping peaks. To overcome this problem, analytes are usually analyzed separately making analysis long and tedious. OBJECTIVE: A method combining two-dimensional ion chromatography (2D-IC) and valve switching was developed for the simultaneous determination of anions (F-, Cl-, NO2-, SO42-, NO3-, and PO43-) and carbohydrates (glycerin, glucosyl glycerol, trehalose, mannose, glucose, galactose, fructose, ribose, and sucrose) in cyanobacteria. METHOD: Interfering color compounds were removed by first passing the sample through graphitized carbon solid phase extraction (SPE) cartridges. Samples were applied to an AS11-HC column, which was used to separate the anions followed by quantification using a conductance detector. Carbohydrates eluted from the AS11-HC column were trapped and separated on a MA1 column and simultaneously quantified using electrochemical detection in the second dimension with valve switching. RESULTS: The following parameters were established: LOD, 0.001-0.030 (mg/L); LOQ, 0.001-0.010 (mg/L); linearity (R2), 0.9940; repeatability, 0.39-3.02%; and spiked recovery, 90.1-107%. CONCLUSIONS: The proposed method is adequately linear, accurate, and repeatable. The 2D-IC method provides fast, high-resolution, and completely automated procedure for the simultaneous determination of anions and carbohydrates without co-elution compared to the 1D ion chromatography method. This study provides application perspectives for use in biotechnology and other research fields. HIGHLIGHTS: An accurate and effective 2D-IC method was developed for determining anions and carbohydrates in cyanobacteria. The method includes pre-treating samples with graphitized carbon SPE cartridges.


Subject(s)
Chromatography , Cyanobacteria , Anions , Carbohydrates , Solid Phase Extraction
12.
ACS Appl Mater Interfaces ; 12(1): 443-450, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31814385

ABSTRACT

Nickel hydroxide (Ni(OH)2)-based electrocatalysts are promising for the oxygen evolution reaction (OER) due to their low cost, but their activity and durability still need substantial improvement to meet practical application. Here, we report a sulfate-functionalized Ni(OH)2 nanobelt (S-Ni(OH)2) electrocatalyst, which exhibited self-enhanced OER activity due to its self-renewed surface during anodic oxidation. The S-Ni(OH)2 was in situ grown on the nickel foam (NF) surface in potassium peroxydisulfate solution through one-step hydrothermal treatment. This material outperformed all the existing electrocatalysts in the intensity and duration of the OER activity enhancement. An overpotential drop of 70 mV is shown by the S-Ni(OH)2/NF electrode during 110 h reaction at a current density of 100 mA cm-2, and the overpotential remains as low as 358 mV at a current density of 200 mA cm-2. Such activity enhancement during OER is mainly ascribed to the formation of a highly active NiOOH/Ni(SO4)0.3(OH)1.4 composite on the S-Ni(OH)2 surface as a result of gradual sulfate release. Given the facile and environmentally benign fabrication process (without external addition of a Ni source and surfactant) and good electrochemical properties (high activity and long lifetime), the S-Ni(OH)2 holds great potential for practical OER application. The surface self-renewal strategy developed here might also be expanded to other electrocatalysts and electrochemical processes.

13.
ChemSusChem ; 12(24): 5291-5299, 2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31674132

ABSTRACT

Nickel hydroxide is promising for use in supercapacitor applications because of its low cost and tunable electrochemical properties, but its performance is usually restricted by insufficient conductivity and surface reactivity. In this work, sulfate-functionalized Ni(OH)2 (SNO) nanoplates were grown in situ on nickel foam (NF) by a green and facile one-step hydrothermal treatment of NF without the need for an external Ni source or surfactant addition. The resulting material showed a 9.3 times higher areal capacity and 1.8 times higher rate capability than the sulfate-free control and retained 81.3 % capacity after 5000 cycles. If used as the positive electrode in a hybrid supercapacitor, the SNO/NF//activated carbon system achieved >95 % Coulombic efficiency, a maximum energy density of 3.59 Wh m-2 , and a maximum power density of 44.63 Wm-2 , which surpass those achievable by most known Ni-based supercapacitors. Detailed material characterization and DFT calculations revealed that the introduction of sulfate expanded the layer spacing of Ni(OH)2 and improved the electrical conductivity and wettability to favor more efficient electrolyte diffusion, charge transfer, and reactant adsorption. The high loading of reactive components and inherited porous structure also contributed to the superior capacitive performance of the SNO/NF electrodes. Therefore, SNO/NF holds great potential for commercialized supercapacitor applications.

14.
Wei Sheng Wu Xue Bao ; 54(3): 251-60, 2014 Mar 04.
Article in Chinese | MEDLINE | ID: mdl-24984516

ABSTRACT

Being a surface structure of bacteria, flagella have been thought to simply act as the locomotive organelles for a long time. In recent years, as increasing information gathered from studies on the pathogenicity of flagella, we found flagella could contribute to invasion and adhesion to the host cells, playing an important role in the biofilm formation and being correlated with bacterial virulence secretion system. Binding of flagellin and toll-like receptor 5 may stimulate signaling pathway, resulting in the pro-inflammatory response. Meanwhile, flagella act as a new immune adjuvant as well, because of their good immunity character. This article summarizes the current knowledge of bacterial flagella, including their structure, contribution to the pathogenicity of the bacteria, and their potential application in immunity.


Subject(s)
Bacteria/pathogenicity , Bacterial Infections/microbiology , Flagella/physiology , Animals , Bacteria/genetics , Bacteria/immunology , Bacterial Infections/immunology , Flagella/genetics , Flagella/immunology , Flagellin/genetics , Flagellin/immunology , Humans , Virulence
15.
Vet Res ; 45: 32, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24641581

ABSTRACT

Type III secretion systems (T3SSs) are employed by Gram-negative bacteria to deliver effector proteins into the cytoplasm of infected host cells. Enteropathogenic Escherichia coli use a T3SS to deliver effector proteins that result in the creation of the attaching and effacing lesions. The genome sequence of the Escherichia coli pathotype O157:H7 revealed the existence of a gene cluster encoding components of a second type III secretion system, the E. coli type III secretion system 2 (ETT2). Researchers have revealed that, although ETT2 may not be a functional secretion system in most (or all) strains, it still plays an important role in bacterial virulence. This article summarizes current knowledge regarding the E. coli ETT2, including its genetic characteristics, prevalence, function, association with virulence, and prospects for future work.


Subject(s)
Bacterial Secretion Systems , Enterohemorrhagic Escherichia coli/physiology , Escherichia coli Proteins/metabolism , Shiga-Toxigenic Escherichia coli/physiology , Animals , Enterohemorrhagic Escherichia coli/pathogenicity , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Humans , Prevalence , Shiga-Toxigenic Escherichia coli/pathogenicity , Virulence
16.
Vet Microbiol ; 168(1): 148-53, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24238669

ABSTRACT

Bacteria that form biofilms are often highly resistant to antibiotics and are capable of evading the host immune system. To evaluate the role of flagellin and F4 fimbriae on biofilm formation by enterotoxigenic Escherichia coli (ETEC), we deleted the fliC (encoding the major flagellin protein) and/or the faeG (encoding the major subunit of F4 fimbriae) genes from ETEC C83902. Biofilm formation was reduced in the fliC mutant but increased in the faeG mutant, as compared with the wild-type strain. The expression of AI-2 quorum sensing associated genes was regulated in the fliC and faeG mutants, consistent with the biofilm formation of these strains. But, deleting fliC and/or faeG also inhibited AI-2 quorum sensing activity.


Subject(s)
Antigens, Bacterial/metabolism , Biofilms , Enterotoxigenic Escherichia coli/physiology , Escherichia coli Proteins/metabolism , Fimbriae Proteins/metabolism , Flagellin/metabolism , Quorum Sensing/genetics , Antigens, Bacterial/genetics , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Fimbriae Proteins/genetics , Flagellin/genetics , Gene Expression Regulation, Bacterial/genetics , Mutation
17.
Vet Microbiol ; 166(1-2): 220-4, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23746569

ABSTRACT

Flagellar structures contribute to the virulence of multiple gastrointestinal pathogens either as the effectors of motility, as adhesins, or as a secretion apparatus for virulence factors. Escherichia coli F18ab variant strains are associated with edema disease (ED) in pig industries worldwide. These strains use flagella to increase the efficiency of epithelial cell invasion. In this study, we aimed to elucidate the mechanism by which flagella contribute to F18ab E. coli invasion. To explore the role of flagella in the invasion process, we performed invasion assays with either flagellated and motile, flagellated but non-motile, or non-flagellated non-motile bacteria. We observed that flagellated but non-motile bacteria invade piglet epithelial cells even more efficiently than the parent wild-type (WT) strain in vitro. By contrast, the non-flagellated bacteria have significantly reduced invasion as compared with the parent strain. These results demonstrate that flagella function mainly as adhesins to enhance the ability of F18ab E. coli to target piglet epithelial cells.


Subject(s)
Adhesins, Bacterial/metabolism , Epithelial Cells/microbiology , Escherichia coli Proteins/metabolism , Shiga-Toxigenic Escherichia coli/physiology , Swine/microbiology , Adhesins, Bacterial/genetics , Animals , Bacterial Adhesion , Escherichia coli Proteins/genetics , Flagella/genetics , Flagella/metabolism , Flagellin , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Shiga-Toxigenic Escherichia coli/pathogenicity , Virulence
18.
Vet Res ; 44: 30, 2013 May 13.
Article in English | MEDLINE | ID: mdl-23668601

ABSTRACT

The role of flagella in the pathogenesis of F4ac+ Enterotoxigenic Escherichia coli (ETEC) mediated neonatal and post-weaning diarrhea (PWD) is not currently understood. We targeted the reference C83902 ETEC strain (O8:H19:F4ac+ LT+ STa+ STb+), to construct isogenic mutants in the fliC (encoding the major flagellin protein), motA (encoding the flagella motor), and faeG (encoding the major subunit of F4 fimbriae) genes. Both the ΔfliC and ΔfaeG mutants had a reduced ability to adhere to porcine intestinal epithelial IPEC-J2 cells. F4 fimbriae expression was significantly down-regulated after deleting fliC, which revealed that co-regulation exists between flagella and F4 fimbriae. However, there was no difference in adhesion between the ΔmotA mutant and its parent strain. These data demonstrate that both flagella and F4 fimbriae are required for efficient F4ac+ ETEC adhesion in vitro.


Subject(s)
Diarrhea/microbiology , Enterotoxigenic Escherichia coli/pathogenicity , Escherichia coli Infections/veterinary , Escherichia coli Proteins/metabolism , Fimbriae, Bacterial/metabolism , Flagella/metabolism , Swine Diseases/microbiology , Adhesins, Escherichia coli/metabolism , Animals , Bacterial Adhesion , Bacterial Proteins/metabolism , Cell Line , Diarrhea/metabolism , Enterotoxigenic Escherichia coli/metabolism , Epithelial Cells/cytology , Epithelial Cells/microbiology , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Flagellin , Swine , Swine Diseases/metabolism , Virulence , Virulence Factors/metabolism
19.
Article in English | MEDLINE | ID: mdl-22516116

ABSTRACT

A 2-pyrazoline derivation of 1-phenyl-3-(4-methylphenyl)-5-(3,4-dimethyl phenyl)-2-pyrazoline has been characterized by X-ray single crystal diffraction, UV-vis and fluorescence spectroscopy. For the title compound, density functional theory (DFT) calculations of the structure and natural population atomic charge analysis have been performed at B3LYP/6-311G** level of theory. By using TD-DFT method, electron spectra of the title compound have been predicted, which suggest the B3LYP/6-311G** method can approximately simulate the electron spectra for the system presented here. Comparative studies on the title compound with 1-phenyl-3-(4-methylphenyl)-5-phenyl-2-pyrazoline indicate that introducing electron-donating groups in 5-phenyl ring of pyrazoline ring influences the peak location and intensity in electronic and fluorescence spectra.


Subject(s)
Pyrazoles/chemistry , Absorption , Crystallography, X-Ray , Electrons , Models, Molecular , Molecular Conformation , Spectrometry, Fluorescence , Thermodynamics
20.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 4): o836, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21754119

ABSTRACT

In the crystal of the title compound, 2C(5)H(7)N(2) (+)·C(4)N(4)S(6) (2-)·H(2)O, inter-molecular N-H⋯S and N-H⋯N hydrogen bonds link four cations and two dianions into a centrosymmetric cluster. The crystal packing is further consolidated by π-π inter-actions between the five- and six-membered rings of neighbouring clusters [centroid-centroid distances = 3.692 (3), 3.718 (3), 3.660 (3) and 3.696 (3) Å] and via O-H⋯N, O-H⋯S and N-H⋯O hydrogen bonds involving the uncoordinated water mol-ecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...