Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38002973

ABSTRACT

In higher plants, WRKY transcription factors are broadly involved in a variety of life activities and play an important role in both biotic and abiotic stress responses. However, little is known about the functions of WRKY genes in the popular species, such as Cucurbita maxima (pumpkin), which is planted worldwide. In the present study, 102 CmWRKY genes were identified in the C. maxima genome. Chromosome location, multiple sequence alignment, phylogenetic analysis, and synteny analysis of the CmWRKYs were performed. Notably, we found that silencing CmWRKY22 promoted cucumber mosaic virus (CMV) infection, whereas overexpression of CmWRKY22 inhibited the CMV infection. Subsequently, an electrophoretic mobility shift assay (EMSA) confirmed that CmWRKY22 was able to bind to the W-box at the promoter of CmPR1b, which is a responsive gene of the salicylic acid (SA) signaling pathway. In summary, this study has provided a foundation for the antiviral functions of WRKY transcription factors in C. maxima.


Subject(s)
Cucurbita , Cytomegalovirus Infections , Cucurbita/genetics , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics
2.
Curr Med Sci ; 43(5): 847-854, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37721665

ABSTRACT

Alzheimer's disease (AD) is the most prevalent cause of dementia worldwide. Because of the progressive neurodegeneration, individual cognitive and behavioral functions are impaired, affecting the quality of life of millions of people. Although the exact pathogenesis of AD has not been fully elucidated, amyloid plaques, neurofibrillary tangles (NFTs), and sustaining neuroinflammation dominate its characteristics. As one of the major tau kinases leading to hyperphosphorylation and aggregation of tau, glycogen synthase kinase-3ß (GSK-3ß) has been drawing great attention in various AD studies. Another research focus of AD in recent years is the inflammasome, a multiprotein complex acting as a regulator in immunological reactions to exogenous and endogenous danger signals, of which the Nod-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome has been studied mostly in AD and proven to play a significant role in AD development by its activation and downstream effects such as caspase-1 maturation and interleukin (IL)-1ß release. Studies have shown that the NLRP3 inflammasome is activated in a GSK-3ß-dependent way and that inhibition of the NLRP3 inflammasome downregulates GSK-3ß, suggesting that these two important proteins are closely related. This article reviews the respective roles of GSK-3ß and the NLRP3 inflammasome in AD as well as their relationship and interaction.

4.
Opt Express ; 30(20): 35554-35566, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36258504

ABSTRACT

In this paper, we theoretically and numerically demonstrate a polarization-controlled and symmetry-dependent multiple plasmon-induced transparency (PIT) in a graphene-based metasurface. The unit cell of metasurface is composed of two reversely placed U-shaped graphene nanostructures and a rectangular graphene ring stacking on a dielectric substrate. By adjusting the polarization of incident light, the number of transparency windows can be actively modulated between 1 and 2 when the nanostructure keeps a geometrical symmetry with respect to the x-axis. Especially, when the rectangular graphene ring has a displacement along the y-direction, the number of transparency windows can be arbitrarily switched between 2 and 3. The operation mechanism behind the phenomena can be attributed to the near-field coupling and electromagnetic interaction between the bright modes excited in the unit of graphene resonators. Moreover, the electromagnetic simulations obtained by finite-difference time-domain (FDTD) method agree well with the theoretical results based on the coupled modes theory (CMT). In addition, as applications of the designed nanostructure, we also study the modulation degrees of amplitude, insertion loss and group index of transmission spectra for different Fermi energies, which demonstrates an excellent synchronous switch functionality and slow light effect at multiple frequencies. Our designed metasurface may have potential applications in mid-infrared optoelectronic devices, such as optical switches, modulators, and slow-light devices, etc.

5.
Appl Opt ; 60(14): 4245-4250, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33983181

ABSTRACT

It is common for researchers to learn about the physical process of discharge by studying the intensity of specific spectral lines in the emission spectrum. By using this method, every microscopic process involving light radiation can be quantitatively analyzed, but there is a problem of how to select appropriate spectral lines for the comprehensive judgment of changes in the discharge process. Here, we present a comprehensive method for converting the visible spectrum of discharge into chromaticity coordinates. In this way, a large number of spectral data are transformed into a single chromaticity coordinate to diagnose the gas discharge directly and quickly, and the comprehensive evaluation of the discharge status is implemented.

6.
PeerJ ; 7: e7930, 2019.
Article in English | MEDLINE | ID: mdl-31660276

ABSTRACT

The genus Cucurbita comprises many popular vegetable and ornamental plants, including pumpkins, squashes, and gourds, that are highly valued in China as well as in many other countries. During a survey conducted in Zhejiang province, Southeast China in 2016, severe symptoms of viral infection were observed on Cucurbita maxima Duch. ex Lam. Diseased plants showed symptoms such as stunting, mosaicking, Shoe string, blistering, yellowing, leaf deformation, and fruit distortion. Approximately, 50% of Cucurbita crops produced in Jinhua were diseased, causing an estimated yield loss of 35%. In this study, we developed a method using all known virus genomes from the NCBI database as a reference to map small RNAs to develop a diagnostic tool that could be used to diagnose virus diseases of C. maxima. 25 leaf samples from different symptomatic plants and 25 leaf samples from non-symptomatic plants were collected from the experimental field of Jihua National Agricultural Technology Garden for pathogen identification. Small RNAs from each set of three symptomatic and non-symptomatic samples were extracted and sequenced by Illumina sequencing. Twenty-four different viruses were detected in total. However, the majority of the small RNAs were from Zucchini yellow mosaic virus (ZYMV), Watermelon mosaic virus (WMV), and Cucumber mosaic virus (CMV). Mixed infections of these three viruses were diagnosed in leaf samples from diseased plants and confirmed by reverse transcription PCR (RT-PCR) using primers specific to these three viruses. Crude sap extract from symptomatic leaf samples was mechanically inoculated back into healthy C. maxima plants growing under greenhouse conditions. Inoculated plants developed the same disease symptoms as those observed in the diseased plants and a mixed infection of ZYMV, WMV, and CMV was detected again by RT-PCR, thus fulfilling Koch's postulates. The diagnostic method developed in this study involves fewer bioinformatics processes than other diagnostic methods, does not require complex settings for bioinformatics parameters, provides a high level of sensitivity to rapidly diagnose plant samples with symptoms of virus diseases and can be performed cheaply. This method therefore has the potential to be widely applied as a diagnostic tool for viruses that have genome information in the NCBI database.

7.
Onco Targets Ther ; 12: 11487-11496, 2019.
Article in English | MEDLINE | ID: mdl-31920337

ABSTRACT

BACKGROUND: Glioma is a common primary brain tumor with extremely poor prognosis outcomes. Increasing evidences have proved the relation between lncRNAs and glioma onset and progression. LncRNA SNHG5 involves in the biological activities of tumor cells, such as proliferation, migration and metastasis. Nevertheless, it is still necessary to explain the molecular mechanism and biofunction of SNHG5 in glioma. MATERIALS AND METHODS: Quantitative real-time PCR (qRT-PCR) was performed to analyze expressions of SNHG5, miR-205-5p and ZEB2 in tumor tissues and cell lines. The cell counting kit-8 (CCK-8) assay, plate and soft agar colony formation assays were performed to evaluate cell proliferation ability. RNA immunoprecipitation assay and dual-luciferase reporter assay were used to confirm the interaction among SNHG5, miR-205-5p and ZEB2. The protein level of ZEB2 was measured by Western blot. RESULTS: Based on our findings, compared with normal tissues, the elevated expression of SNHG5 and decreased expression of miR-205-5p were observed in glioma tissues. The downregulation of SNHG5 exerted an obvious inhibitory effect on glioma cells in terms of their proliferation. With regard to the underlying mechanism, SNHG5 presented a direct inhibitory influence on miR-205-5p which targeted to the 3'-UTR region of zinc finger E-box binding homeobox 2 (ZEB2) mRNA. As a competing endogenous RNA (ceRNA), SNHG5 sponged miR-205-5p, regulating the expression of ZEB2 thereby. CONCLUSION: These discoveries indicate that SNHG5 promotes proliferation of glioma by regulating miR-205-5p/ZEB2 axis.

8.
PLoS One ; 9(6): e96352, 2014.
Article in English | MEDLINE | ID: mdl-24914778

ABSTRACT

Leaf equivalent water thickness (LEWT) is an important indicator of crop water status. Effectively monitoring the water status of wheat under different nitrogen treatments is important for effective water management in precision agriculture. Trends in the variation of LEWT in wheat plants during plant growth were analyzed based on field experiments in which wheat plants under various water and nitrogen treatments in two consecutive growing seasons. Two-band spectral indices [normalized difference spectral indices (NDSI), ratio spectral indices (RSI), different spectral indices (DSI)], and then three-band spectral indices were established based on the best two-band spectral index within the range of 350-2500 nm to reduce the noise caused by nitrogen and saturation. Then, optimal spectral indices were selected to construct models of LEWT monitoring in wheat. The results showed that the two-band spectral index NDSI(R1204, R1318) could be used for LEWT monitoring throughout the wheat growth season, but the model performed differently before and after anthesis. Therefore, further two-band spectral indices NDSIb(R1445, R487), NDSIa(R1714, R1395), and NDSI(R1429, R416), were constructed for the two developmental phases, with NDSI(R1429, R416) considered to be the best index. Finally, a three-band index (R1429-R416-R1865)/(R1429+R416+R1865), which was superior for monitoring LEWT and reducing the noise caused by nitrogen, was formed on the best two-band spectral index NDSI(R1429, R416) by adding the 1,865 nm wavelenght as the third band. This produced more uniformity and stable performance compared with the two-band spectral indices in the LEWT model. The results are of technical significance for monitoring the water status of wheat under different nitrogen treatments in precision agriculture.


Subject(s)
Nitrogen/analysis , Plant Leaves/chemistry , Spectrum Analysis/standards , Triticum/metabolism , Water/analysis , Reference Values , Signal-To-Noise Ratio , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...