Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 684: 115365, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37914003

ABSTRACT

Mec A, as a representative gene mediating resistance to ß-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA), allows a new genetic analysis for the detection of MRSA. Here, a sensitive, prompt, and visual colorimetry is reported to detect the Mec A gene based on toehold-mediated strand displacement (TMSD) and the enrichment effect of graphene oxide (GO). The Mec A triggers to generate the profuse amount of signal units of single-stranded DNA (SG) composed of a long single-stranded base tail and a base head: the tail can be adsorbed and enriched on the surface of GO; the head can form a G quadruplex structure to exert catalytic function towards 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid). Therefore, through the enrichment effect of GO, the signal units SG reflects different degrees of signal amplification on different substrates (such as aqueous solution or filter membrane). This strategy demonstrates a broad linear working range from 100 pM to 1.5 nM (solution) and 1 pM to 1 nM (filter membrane), with a low detection limit of 39.53 pM (solution) and 333 fM (filter membrane). Analytical performance in real samples suggests that this developed colorimetry is endowed with immense potential for clinical detection applications.


Subject(s)
Biosensing Techniques , Graphite , Methicillin-Resistant Staphylococcus aureus , Colorimetry , Methicillin-Resistant Staphylococcus aureus/genetics , Graphite/chemistry , DNA, Single-Stranded , Limit of Detection
2.
Anal Chim Acta ; 1274: 341586, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37455072

ABSTRACT

Electrochemical aptasensor has been widely studied, while its practical application is limited by the unavoidable variations of aptamer loading densities and low signal amplification efficiency. To overcome these restrictions, an immobilization-free and label-free electrochemical homogeneous aptasensor was constructed for carcinoembryonic antigen (CEA) assay by combining RecJf exonuclease-mediated target cycling strategy and rolling circle amplification technology. In this system, the pre-immobilization of aptamers or other relevant signal elements on the electrode substrate is no longer necessary, thus the electrochemical homogeneous aptasensor shows good versatility on different transducers. Moreover, the whole recognition and signal amplification process are activated instantaneously by a non-professional operation of the solution mixture. This strategy can not only increase the stability (95.1% after 30 days of storage) and reproducibility (2.12% among five independent electrodes), but also further improve the sensitivity (detection limit of fg mL-1 level) due to the free target recognition and dual signal amplification in the homogeneous solution phase. The proposed immobilization-free electrochemical homogeneous aptasensors on different electrode substrates both achieve satisfactory results in actual sample tests, which has the potential for commercial applications and the establishment of other target platforms in the future.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Carcinoembryonic Antigen , Reproducibility of Results , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...