Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.993
Filter
1.
Environ Pollut ; 358: 124494, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968982

ABSTRACT

Tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCPP) are common chlorinated organophosphorus flame retardants (OPFRs) used in industry. They have been frequently detected together in aquatic environments and associated with various hazardous effects. However, the ecological risks of prolonged exposure to these OPFRs at environmentally relevant concentrations in non-model aquatic organisms remain unexplored. This study investigated the effects of long-term exposure (up to 25 days) to TCEP and TCPP on metamorphosis, hepatic antioxidants, and endocrine function in Polypedates megacephalus tadpoles. Exposure concentrations were set at 3, 30, and 90 µg/L for each substance, conducted independently and in equal-concentration combinations, with a control group included for comparison. The integrated biomarker response (IBR) method developed an optimal linear model for predicting the overall ecological risks of TCEP and TCPP to tadpoles in potential distribution areas of Polypedates species. Results showed that: (1) Exposure to environmentally relevant concentrations of TCEP and TCPP elicited variable adverse effects on tadpole metamorphosis time, hepatic antioxidant enzyme activity and related gene expression, and endocrine-related gene expression, with their combined exposure exacerbating these effects. (2) The IBR value of TCEP was consistently greater than that of TCPP at each concentration, with an additive effect observed under their combined exposure. (3) The ecological risk of tadpoles exposed to the combined presence of TCEP and TCPP was highest in China's Taihu Lake and Vietnam's Hanoi than in other distribution locations. In summary, prolonged exposure to environmentally relevant concentrations of TCEP and TCPP presents potential ecological risks to amphibian tadpoles, offering insights for the development of policies and strategies to control TCEP and TCPP pollution in aquatic ecosystems. Furthermore, the methodology employed in establishing the IBR prediction model provides a methodological framework for assessing the overall ecological risks of multiple OPFRs.

2.
Anal Chem ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975729

ABSTRACT

Plant samples with irregular morphology are challenging for longitudinal tissue sectioning. This has restricted the ability to gain insight into some plants using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, we develop a novel technique termed electromagnetic field-assisted frozen tissue planarization (EMFAFTP). This technique involves using a pair of adjustable electromagnets on both sides of a plant tissue. Under an optimized electromagnetic field strength, nondestructive planarization and regularization of the frozen tissue is induced, allowing the longitudinal tissue sectioning that favors subsequent molecular profiling by MALDI-MSI. As a proof of concept, flowers, leaves and roots with irregular morphology from six plant species are chosen to evaluate the performance of EMFAFTP for MALDI-MSI of secondary metabolites, amino acids, lipids, and proteins among others in the plant samples. The significantly enhanced MALDI-MSI capabilities of these endogenous molecules demonstrate the robustness of EMFAFTP and suggest it has the potential to become a standard technique for advancing MALDI-MSI into a new era of plant spatial omics.

3.
J Exp Clin Cancer Res ; 43(1): 187, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965580

ABSTRACT

BACKGROUND: Recent studies have highlighted the significant role of the NF-κB signaling pathway in the initiation and progression of cancer. Furthermore, long noncoding RNAs (lncRNAs) have been identified as pivotal regulators in sustaining the NF-κB signaling pathway's functionality. Despite these findings, the underlying molecular mechanisms through which lncRNAs influence the NF-κB pathway remain largely unexplored. METHODS: Bioinformatic analyses were utilized to investigate the differential expression and prognostic significance of XTP6. The functional roles of XTP6 were further elucidated through both in vitro and in vivo experimental approaches. To estimate the interaction between XTP6 and NDH2, RNA pulldown and RNA Immunoprecipitation (RIP) assays were conducted. The connection between XTP6 and the IκBα promoter was examined using Chromatin Isolation by RNA Purification (ChIRP) assays. Additionally, Chromatin Immunoprecipitation (ChIP) assays were implemented to analyze the binding affinity of c-myc to the XTP6 promoter, providing insights into the regulatory mechanisms at play. RESULTS: XTP6 was remarkedly upregulated in glioblastoma multiforme (GBM) tissues and was connected with adverse prognosis in GBM patients. Our investigations revealed that XTP6 can facilitate the malignant progression of GBM both in vitro and in vivo. Additionally, XTP6 downregulated IκBα expression by recruiting NDH2 to the IκBα promoter, which resulted in elevated levels of H3K27me3, thereby reducing the transcriptional activity of IκBα. Moreover, the progression of GBM was further driven by the c-myc-mediated upregulation of XTP6, establishing a positive feedback loop with IκBα that perpetuated the activation of the NF-κB signaling pathway. Notably, the application of an inhibitor targeting the NF-κB signaling pathway effectively inhibited the continuous activation induced by XTP6, leading to a significant reduction in tumor formation in vivo. CONCLUSION: The results reveal that XTP6 unveils an innovative epigenetic mechanism instrumental in the sustained activation of the NF-κB signaling pathway, suggesting a promising therapeutic target for the treatment of GBM.


Subject(s)
Disease Progression , Glioblastoma , NF-kappa B , Proto-Oncogene Proteins c-myc , RNA, Long Noncoding , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , NF-kappa B/metabolism , Mice , Animals , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Signal Transduction , Prognosis , Feedback, Physiological , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Male , Cell Proliferation , Female
4.
Angew Chem Int Ed Engl ; : e202405371, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965044

ABSTRACT

Spillover of adsorbed species from one active site to another is a key step in heterogeneous catalysis. However, the factors controlling this step, particularly the spillover of polyatomic species, have rarely been studied. Herein, we investigate the spillover dynamics of H* and CH3* species on a single-atom alloy surface (Rh/Cu(111)) upon the dissociative chemisorption of methane (CH4), using molecular dynamics that considers both surface phonons and electron-hole pairs. These dynamical calculations are made possible by a high-dimensional potential energy surface machine learned from density functional theory data. Our results provide compelling evidence that the H* and CH3* can spill over on the metal surface at experimental temperatures and reveal novel dynamical features involving an internal motion during diffusion for CH3*. Increasing surface temperature has minor effect on promoting spillover, as geminate recombinative desorption becomes more prevalent. However, the poisoning of the active site can be mitigated by frequent gaseous molecular collisions that occur under ambient pressure in real-world catalysis, which transfer energy to the trapped adsorbates. Interestingly, the bulky CH3* exhibits a significant spillover advantage over the light H* due to its larger size, which facilitates energy acquisition. These insights help to advance our understanding of spillover in heterogeneous catalysis.

6.
J Bone Joint Surg Am ; 106(13): 1189-1196, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958660

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) and spinal degenerative disorders (SDD) are common diseases that frequently coexist. However, both traditional observational studies and recent Mendelian randomization (MR) studies have demonstrated conflicting evidence on the association between T2DM and SDD. This comparative study explored and compared the association between T2DM and SDD using observational and MR analyses. METHODS: For observational analyses, cross-sectional studies (44,972 participants with T2DM and 403,095 participants without T2DM), case-control studies (38,234 participants with SDD and 409,833 participants without SDD), and prospective studies (35,550 participants with T2DM and 392,046 participants without T2DM with follow-up information until 2022) were performed to test the relationship between T2DM and SDD using individual-level data from the U.K. Biobank from 2006 to 2022. For MR analyses, the associations between single-nucleotide polymorphisms with SDD susceptibility obtained using participant data from the U.K. Biobank, which had 407,938 participants from 2006 to 2022, and the FinnGen Consortium, which had 227,388 participants from 2017 to 2022, and genetic predisposition to T2DM obtained using summary statistics from a pooled genome-wide association study involving 1,407,282 individuals were examined. The onset and severity of T2DM are not available in the databases being used. RESULTS: Participants with T2DM were more likely to have SDD than their counterparts. Logistic regression analysis identified T2DM as an independent risk factor for SDD, which was confirmed by the Cox proportional hazard model results. However, using single-nucleotide polymorphisms as instruments, the MR analyses demonstrated no causal relationship between T2DM and SDD. The lack of such an association was robust in the sensitivity analysis, and no pleiotropy was seen. CONCLUSIONS: Our results suggest that the association between T2DM and SDD may be method-dependent. Researchers and clinicians should be cautious in interpreting the association, especially the causal association, between T2DM and SDD. Our findings provide fresh insights into the association between T2DM and SDD by various analysis methods and guide future research and clinical efforts in the effective prevention and management of T2DM and SDD. LEVEL OF EVIDENCE: Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.


Subject(s)
Diabetes Mellitus, Type 2 , Mendelian Randomization Analysis , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Polymorphism, Single Nucleotide , Female , Male , Case-Control Studies , Middle Aged , Genetic Predisposition to Disease , Cross-Sectional Studies , Prospective Studies , Observational Studies as Topic , Aged , Genome-Wide Association Study
7.
Sci Total Environ ; 946: 174428, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964390

ABSTRACT

Tris(2-chloroethyl) phosphate (TCEP), a chlorinated organophosphate ester, is commonly found in aquatic environments. Due to its various toxic effects, it may pose a risk to the health of aquatic organisms. However, the potential impacts of TCEP exposure on the intestinal microbiota and hepatic function in amphibians have not been reported. This study investigated the impact of long-term exposure to environmentally relevant concentrations of TCEP (0, 3, and 90 µg/L) on the intestinal microbiota and hepatic transcriptome of Polypedates megacephalus tadpoles. The results showed that the body size of the tadpoles decreased significantly with an increase in TCEP concentration. Additionally, TCEP exposure affected the diversity and composition of the intestinal microbiota in tadpoles, leading to significant changes in the relative abundance of certain bacterial groups (the genera Aeromonas decreased and Citrobacter increased) and potentially promoting a more even distribution of microbial species, as indicated by a significant increase in the Simpson index. Moreover, the impact of TCEP on hepatic gene expression profiles in tadpoles was significant, with the majority of differentially expressed genes (DEGs) (709 out of 906 total DEGs in 3 µg/L of TCEP versus control, and 344 out of 387 DEGs in 90 µg/L of TCEP versus control) being significantly down-regulated, which were primarily related to immune response and immune system process. Notably, exposure to TCEP significantly reduced the relative abundance of the genera Aeromonas and Cetobacterium in the tadpole intestine. This reduction was positively correlated with the down-regulated expression of immune-related genes in the liver of corresponding tadpoles. In summary, these findings provide empirical evidence of the potential health risks to tadpoles exposed to TCEP at environmentally relevant concentrations.

8.
Front Pharmacol ; 15: 1391896, 2024.
Article in English | MEDLINE | ID: mdl-38966552

ABSTRACT

Objective: In the double-blind, phase III, placebo-controlled RUBY randomized clinical trial, dostarlimab plus carboplatin-paclitaxel significantly increased survival among patients with primary advanced or recurrent endometrial cancer (EC). We conducted a cost-effectiveness analysis of dostarlimab in combination with chemotherapy in these patients stratified by mismatch repair-deficient (dMMR) and mismatch repair-proficient (pMMR) subgroups from the perspective of a United States payer. Materials and methods: A Markov model with three states was employed to simulate patients who were administered either dostarlimab in combination with chemotherapy or chemotherapy based on the RUBY trial. Quality-adjusted life-years (QALYs), lifetime costs, and incremental cost-effectiveness ratio (ICER) were calculated with a willingness-to-pay (WTP) threshold of $150,000 per QALY. Both univariate and probabilistic sensitivity analyses were carried out to explore the robustness of the model. Results: In dMMR EC, the combination of dostarlimab and chemotherapy achieved an additional 5.48 QALYs at an incremental cost of $330,747 compared to chemotherapy alone, resulting in an ICER of $60,349.30 per QALY. In pMMR EC, there were 1.51 additional QALYs gained at an extra cost of $265,148, yielding an ICER of $175,788.47 per QALY. With a 15.2% discount on dostarlimab, the ICER decreased to $150,000 per QALY in the pMMR EC. The univariate sensitivity analysis revealed that the cost of dostarlimab, utility of progression-free survival (PFS), and progressive disease (PD) had the most significant impacts on the outcomes. Probabilistic sensitivity analysis revealed that dostarlimab had a 100% likelihood of being considered cost-effective for patients at a WTP threshold of $150,000 per QALY for dMMR EC, whereas this likelihood was only 0.5% for pMMR EC. Conclusion: Dostarlimab in combination with chemotherapy was cost-effective for primary advanced or recurrent dMMR EC from the perspective of a United States payer at a WTP threshold of $150,000 per QALY, but not for pMMR EC. Lowering the prices of dostarlimab could potentially enhance the cost-effectiveness of treatment for pMMR EC.

9.
Phytomedicine ; 132: 155825, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38968790

ABSTRACT

BACKGROUND: Chemotherapeutic agents including cisplatin, gemcitabine, and pemetrexed, significantly enhance the efficacy of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC) by increasing PD-L1 expression and potentiating T cell cytotoxicity. However, the low response rate and adverse effects limit the application of chemotherapy/ICI combinations in patients. METHODS: We screened for medicinal herbs that could perturb PD-L1 expression and enhance T cell cytotoxicity in the presence of anti-PD-L1 antibody, and investigated the underlying mechanisms. RESULTS: We found that the aqueous extracts of Centipeda minima (CM) significantly enhanced the cancer cell-killing activity and granzyme B expression level of CD8+ T cells, in the presence of anti-PD-L1 antibody. Both CM and its active component 6-O-angeloylplenolin (6-OAP) upregulated PD-L1 expression by suppressing GSK-3ß-ß-TRCP-mediated ubiquitination and degradation. CM and 6-OAP significantly enhanced ICI-induced reduction of tumor burden and prolongation of overall survival of mice bearing NSCLC cells, accompanied by upregulation of PD-L1 and increase of CD8+ T cell infiltration. CM also exhibited anti-NSCLC activity in cells and in a patient-derived xenograft mouse model. CONCLUSIONS: These data demonstrated that the induced expression of PD-L1 and enhancement of CD8+ T cell cytotoxicity underlay the beneficial effects of 6-OAP-rich CM in NSCLCs, providing a clinically available and safe medicinal herb for combined use with ICIs to treat this deadly disease.

10.
Adv Mater ; : e2404648, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970529

ABSTRACT

Flexible and highly thermally conductive materials with consistent thermal conductivity (λ) during large deformation are urgently required to address the heat accumulation in flexible electronics. In this study, spring-like thermal conduction pathways of silver nanowire (S-AgNW) fabricated by 3D printing are compounded with polydimethylsiloxane (PDMS) to prepare S-AgNW/PDMS composites with excellent and consistent λ during deformation. The S-AgNW/PDMS composites exhibit a λ of 7.63 W m-1 K-1 at an AgNW amount of 20 vol%, which is ≈42 times that of PDMS (0.18 W m-1 K-1) and higher than that of AgNW/PDMS composites with the same amount and random dispersion of AgNW (R-AgNW/PDMS) (5.37 W m-1 K-1). Variations in the λ of 20 vol% S-AgNW/PDMS composites are less than 2% under a deformation of 200% elongation, 50% compression, or 180° bending, which benefits from the large deformation characteristics of S-AgNW. The heat-transfer coefficient (0.29 W cm-2 K-1) of 20 vol% S-AgNW/PDMS composites is ≈1.3 times that of the 20 vol% R-AgNW/PDMS composites, which reduces the temperature of a full-stressed central processing unit by 6.8 °C compared to that using the 20 vol% R-AgNW/PDMS composites as a thermally conductive material in the central processing unit.

11.
Adv Sci (Weinh) ; : e2400929, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900070

ABSTRACT

To elucidate the brain-wide information interactions that vary and contribute to individual differences in schizophrenia (SCZ), an information-resolved method is employed to construct individual synergistic and redundant interaction matrices based on regional pairwise BOLD time-series from 538 SCZ and 540 normal controls (NC). This analysis reveals a stable pattern of regionally-specific synergy dysfunction in SCZ. Furthermore, a hierarchical Bayesian model is applied to deconstruct the patterns of whole-brain synergy dysfunction into three latent factors that explain symptom heterogeneity in SCZ. Factor 1 exhibits a significant positive correlation with Positive and Negative Syndrome Scale (PANSS) positive scores, while factor 3 demonstrates significant negative correlations with PANSS negative and general scores. By integrating the neuroimaging data with normative gene expression information, this study identifies that each of these three factors corresponded to a subset of the SCZ risk gene set. Finally, by combining data from NeuroSynth and open molecular imaging sources, along with a spatially heterogeneous mean-field model, this study delineates three SCZ synergy factors corresponding to distinct symptom profiles and implicating unique cognitive, neurodynamic, and neurobiological mechanisms.

12.
Fitoterapia ; 177: 106084, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897251

ABSTRACT

Three new ergosterols featuring with a highly conjugated ring system, psathrosterols C-E (1-3), have been isolated from the fungus Psathyrella rogueiana. The structures with the absolute configurations were elucidated by means of spectroscopic methods and single crystal X-ray diffraction. Compounds 1-3 exhibit inhibitory activity against NO production with IC50 values ranging from 8.4 to 21.8 µM. Compound 1 inhibits the LPS-induced proliferation of B lymphocyte cells with an IC50 value of 12.3 µM.

13.
Animals (Basel) ; 14(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891605

ABSTRACT

Haemaphysalis longicornis is a common tick species that carries several pathogens. There are few reports on the influence of different hosts on the structure of midgut microflora in H. longicornis. In this study, midgut contents of fully engorged female H. longicornis were collected from the surface of tiger (Panthera tigris) and deer (Dama dama). The bacterial genomic DNA of each sample was extracted, and the V3-V4 regions of the bacterial 16S rRNA were sequenced using the Illumina NovaSeq sequencing. The diversity of the bacterial community of the fully engorged female H. longicornis on the surface of tiger was higher than that of deer. In total, 8 phyla and 73 genera of bacteria annotations were detected in the two groups. At the phylum level, the bacterial phyla common to the two groups were Proteobacteria, Firmicutes, and Actinobacteriota. At the genus level, there were 20 common bacterial genera, among which the relative abundances of Coxiella, Morganella, Diplorickettsia, and Acinetobacter were high. The Morganella species was further identified to be Morganella morganii. The alpha diversity index indicated that the bacterial diversity of the tiger group was higher than that of the deer group. Bacteroidota, Patescibacteria, Desulfobacterota, Verrucomicrobiota, and Cyanobacteria were solely detected in the tiger group. A total of 52 bacterial genera were unique in the tiger group, while one bacterial genus was unique in the deer group. This study indicates that there are differences in the structure of the gut bacteria of the same tick species among different hosts. Further culture-based methods are needed to provide a more comprehensive understanding of the tick microbiota parasitizing different hosts.

14.
Quant Imaging Med Surg ; 14(6): 4015-4030, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846304

ABSTRACT

Background: Manual planning of scans in clinical magnetic resonance imaging (MRI) exhibits poor accuracy, lacks consistency, and is time-consuming. Meanwhile, classical automated scan plane positioning methods that rely on certain assumptions are not accurate or stable enough, and are computationally inefficient for practical application scenarios. This study aims to develop and evaluate an effective, reliable, and accurate deep learning-based framework that incorporates prior physical knowledge for automatic head scan plane positioning in MRI. Methods: A deep learning-based end-to-end automated scan plane positioning framework has been developed for MRI head scans. Our model takes a three-dimensional (3D) pre-scan image input, utilizing a cascaded 3D convolutional neural network to detect anatomical landmarks from coarse to fine. And then, with the determined landmarks, accurate scan plane localization can be achieved. A multi-scale spatial information fusion module was employed to aggregate high- and low-resolution features, combined with physically meaningful point regression loss (PRL) function and direction regression loss (DRL) function. Meanwhile, we simulate complex clinical scenarios to design data augmentation strategies. Results: Our proposed approach shows good performance on a clinically wide range of 229 MRI head scans, with a point-to-point absolute error (PAE) of 0.872 mm, a point-to-point relative error (PRE) of 0.10%, and an average angular error (AAE) of 0.502°, 0.381°, and 0.675° for the sagittal, transverse, and coronal planes, respectively. Conclusions: The proposed deep learning-based automated scan plane positioning shows high efficiency, accuracy and robustness when evaluated on varied clinical head MRI scans with differences in positioning, contrast, noise levels and pathologies.

15.
Transl Res ; 272: 1-18, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823438

ABSTRACT

OBJECTIVES: To unravel the heterogeneity and function of microenvironmental neutrophils during intervertebral disc degeneration (IDD). METHODS: Single-cell RNA sequencing (scRNA-seq) was utilized to dissect the cellular landscape of neutrophils in intervertebral disc (IVD) tissues and their crosstalk with nucleus pulposus cells (NPCs). The expression levels of macrophage migration inhibitory factor (MIF) and ACKR3 in IVD tissues were detected. The MIF/ACKR3 axis was identified and its effects on IDD were investigated in vitro and in vivo. RESULTS: We sequenced here 71520 single cells from 5 control and 9 degenerated IVD samples using scRNA-seq. We identified a unique cluster of neutrophils abundant in degenerated IVD tissues that highly expressed MIF and was functionally enriched in extracellular matrix organization (ECMO). Cell-to-cell communication analyses showed that this ECMO-neutrophil subpopulation was closely interacted with an effector NPCs subtype, which displayed high expression of ACKR3. Further analyses revealed that MIF was positively correlated with ACKR3 and functioned via directly binding to ACKR3 on effector NPCs. MIF inhibition attenuated degenerative changes of NPCs and extracellular matrix, which could be partially reversed by ACKR3 overexpression. Clinically, a significant correlation of high MIF/ACKR3 expression with advanced IDD grade was observed. Furthermore, we also found a positive association between MIF+ ECMO-neutrophil counts and ACKR3+ effector NPCs density as well as higher expression of the MIF/ACKR3 signaling in areas where these two cell types were neighbors. CONCLUSIONS: These data suggest that ECMO-neutrophil promotes IDD progression by their communication with NPCs via the MIF/ACKR3 axis, which may shed light on therapeutic strategies.

16.
Aquat Toxicol ; 272: 106979, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823072

ABSTRACT

Tris(2-chloroethyl) phosphate (TCEP) and tris(1­chloro-2-propyl) phosphate (TCPP) are widely used as chlorinated organophosphate flame retardants (OPFRs) due to their fire-resistance capabilities. However, their extensive use has led to their permeation and pollution in aquatic environments. Using amphibians, which are non-model organisms, to test the toxic effects of OPFRs is relatively uncommon. This study examined the acute and chronic toxicity differences between TCEP and TCPP on Polypedates megacephalus tadpoles and evaluated the potential ecological risks to tadpoles in different aquatic environments using the risk quotient (RQ). In acute toxicity assay, the tadpole survival rates decreased with increased exposure time and concentrations, with TCEP exhibiting higher LC50 values than TCPP, at 305.5 mg/L and 70 mg/L, respectively. In the chronic assay, prolonged exposure to 300 µg/L of both substances resulted in similar adverse effects on tadpole growth, metamorphosis, and hepatic antioxidant function. Based on RQ values, most aquatic environments did not pose an ecological risk to tadpoles. However, the analysis showed that wastewater presented higher risks than rivers and drinking water, and TCPP posed a higher potential risk than TCEP in all examined aquatic environments. These findings provide empirical evidence to comprehend the toxicological effects of OPFRs on aquatic organisms and to assess the safety of aquatic environments.


Subject(s)
Anura , Flame Retardants , Larva , Organophosphates , Organophosphorus Compounds , Water Pollutants, Chemical , Animals , Flame Retardants/toxicity , Larva/drug effects , Larva/growth & development , Water Pollutants, Chemical/toxicity , Organophosphorus Compounds/toxicity , Risk Assessment , Organophosphates/toxicity , Anura/growth & development , Metamorphosis, Biological/drug effects , Toxicity Tests, Acute , Lethal Dose 50
17.
Adv Mater ; : e2403848, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837906

ABSTRACT

All-solid-state lithium batteries with polymer electrolytes suffer from electrolyte decomposition and lithium dendrites because of the unstable electrode/electrolyte interfaces. Herein, a molecule crowding strategy is proposed to modulate the Li+ coordinated structure, thus in situ constructing the stable interfaces. Since 15-crown-5 possesses superior compatibility with polymer and electrostatic repulsion for anion of lithium salt, the anions are forced to crowd into a Li+ coordinated structure to weaken the Li+ coordination with polymer and boost the Li+ transport. The coordinated anions prior decompose to form LiF-rich, thin, and tough interfacial passivation layers for stabilizing the electrode/electrolyte interfaces. Thus, the symmetric Li-Li cell can stably operate over 4360 h, the LiFePO4||Li full battery presents 97.18% capacity retention in 700 cycles at 2 C, and the NCM811||Li full battery possesses the capacity retention of 83.17% after 300 cycles. The assembled pouch cell shows excellent flexibility (stand for folding over 2000 times) and stability (89.42% capacity retention after 400 cycles). This work provides a promising strategy to regulate interfacial chemistry by modulating the ion environment to accommodate the interfacial issues and will inspire more effective approaches to general interface issues for polymer electrolytes.

18.
Sci Rep ; 14(1): 13121, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849402

ABSTRACT

Due to the presence of non-line-of-sight (NLOS) obstacles, the localization accuracy in ultra-wideband (UWB) wireless indoor localization systems is typically substantially lower. To minimize the influence of these environmental factors and improve the accuracy of indoor wireless positioning, this paper proposes a density clustering with noise combined with particle swarm optimization (DCNPSO) to improve UWB positioning. Which exploits the advantages of the density-based spatial clustering algorithm with noise (DBSCAN) and particle swarm optimization (PSO) algorithm. The experimental results show that the DCNPSO algorithm achieves 45.25% and 36.14% higher average positioning accuracy than the DBSCAN and PSO algorithms, respectively. The positioning error of this algorithm remains stable within 3 cm in static positioning and can achieve high accuracy in NLOS environments.

19.
Front Neurol ; 15: 1383980, 2024.
Article in English | MEDLINE | ID: mdl-38863508

ABSTRACT

Objective: Spinal schwannomas are the most common intradural extramedullary tumors, and their complete removal is recommended to avoid tumor recurrence. Although laminoplasty provides a sufficient window for tumor resection, this approach may increase tissue trauma and cause postoperative instability compared with unilateral hemilaminectomy. This study aimed to compare the efficacy and clinical outcomes of the two approaches. Materials and methods: We included 100 consecutive patients who underwent unilateral hemilaminectomy or laminoplasty for resection of spinal schwannomas between January 2015 and February 2023. The patients' baseline characteristics, including sex, age, tumor location, percentage of tumor occupying the intradural space, operative time, postoperative length of hospital stay, intraoperative bleeding volume, visual analog scale score, and neurologic results, were retrospectively analyzed. Results: Hemilaminectomy patients who underwent unilateral hemilaminectomy had smaller intraoperative bleeding (p = 0.020) volume, shorter operative time (p = 0.012), and shorter postoperative length of hospital stay (p = 0.044). The mean VAS scores at the last follow-up were similar between the two groups (p = 0.658). Although the postoperative McCormick and Karnofsky Performance scores were not significantly different between the laminoplasty and unilateral hemilaminectomy groups (p = 0.687 and p = 0.649, respectively), there was a statistically significant improvement based on postoperative neurological results compared to preoperative neurological results for both groups. The incidence of postoperative complications was 5% and 11.7% in the unilateral hemilaminectomy and laminoplasty groups, respectively (p = 0.308). Conclusions: For spinal schwannoma resection, unilateral hemilaminectomy has more advantages than laminoplasty, including a shorter postoperative hospital stay, faster procedure, and less intraoperative blood loss while achieving the same desired result.

20.
Fish Physiol Biochem ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904727

ABSTRACT

Golden pompano is an important aquaculture product in the coastal regions of southern China, which is highly dependent on insulin-like growth factor (IGF) for various biological processes. The cDNAs of ToIGF1, ToIGF2, and ToIGF3 are 1718 bp, 1658 bp, and 2272 bp in length, respectively, with corresponding amino acid sequences of 185 aa, 215 aa, and 194 aa. These sequences consist of 5 parts, including the signal peptide, the B domain, the C domain, the A domain, the D domain, and the E domain, which are also found in other species. While ToIGF1 has no SSR polymorphism, ToIGF2 and ToIGF3 have 3 and 1 SSR polymorphism sites, respectively. In terms of tissue expression, ToIGF1 is predominantly expressed in the liver, ToIGF2 shows its highest expression in the gills, and ToIGF3 also shows its highest expression in the gills, but no expression in the liver and spleen. These tissue distribution results suggest that ToIGFs are not only present in growth-related tissues such as the brain, muscle, and liver, but also in reproductive tissues, tissues that regulate osmotic pressure, and tissues related to food intake. This observation is consistent with other bony fish species and highlights the extensive biological functions of ToIGFs that need to be further explored and exploited. In addition, the expression levels of ToIGFs were found to be different in the different dietary groups, including the pelleted food group, the frozen squid group, and the frozen fish group. In the pelleted diet group, ToIGF1 and ToIGF2 were highly expressed in the liver and intestinal tissues, followed by the frozen fish group. These results suggest that the type of diet can affect the body's energy metabolism by influencing tissue expression of growth-related genes, which in turn affects individual growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...