Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Toxicology ; 480: 153317, 2022 10.
Article in English | MEDLINE | ID: mdl-36096317

ABSTRACT

At high exposure levels, organophosphorus insecticides (OPs) exert their toxicity in mammals through the inhibition of brain acetylcholinesterase (AChE) leading to the accumulation of acetylcholine in cholinergic synapses and hyperactivity of the nervous system. Currently, there is a concern that low-level exposure to OPs induces negative impacts in developing children and the chemical most linked to these issues is chlorpyrifos (CPF). Our laboratory has observed that a difference in the susceptibility to repeated exposure to CPF exists between juvenile mice and rats with respect to the inhibition of brain AChE. The basis for this difference is unknown but differences in the levels of the detoxification mechanisms could play a role. To investigate this, 10-day old rat and mice pups were exposed daily for 7 days to either corn oil or a range of dosages of CPF via oral gavage. Four hours following the last administration of CPF on day 16, brain, blood, and liver were collected. The inhibition of brain AChE activity was higher in juvenile rats as compared to juvenile mice. The levels of activity of the detoxification enzymes and the impact of CPF exposure on their activity were determined in the two species at this age. In blood and liver, the enzyme paraoxonase-1 (PON1) hydrolyzes the active metabolite of CPF (CPF-oxon), and the enzymes carboxylesterase (CES) and cholinesterase (ChE) act as alternative binding sites for CPF-oxon removing it from circulation and providing protection. Both species had similar levels of PON1 activity in the liver and serum. Mice had higher ChE activity in liver and serum than rats but, following CPF exposure, the percentage inhibition was similar between species at an equivalent dosage. Even though rats had slightly higher liver CES activity than mice, the level of inhibition following exposure was higher in rats. In serum, juvenile mice had an 8-fold higher CES activity than rats, and exposure to a CPF dosage that almost eliminated CES activity in rats only resulted in 22% inhibition in mice suggesting that the high serum CES activity in mice as compared to rats is a key component in this species difference. In addition, there was a species difference in the sensitivity of CES to inhibition by CPF-oxon with rats having a lower IC50 in both liver and serum as compared to mice. This greater enzyme sensitivity suggests that saturation of CES would occur more rapidly in juvenile rats than in mice, resulting in more CPF reaching the brain to inhibit AChE in rats.


Subject(s)
Chlorpyrifos , Insecticides , Acetylcholine , Acetylcholinesterase/metabolism , Animals , Aryldialkylphosphatase , Carboxylesterase/metabolism , Chlorpyrifos/analogs & derivatives , Chlorpyrifos/toxicity , Cholinesterase Inhibitors/toxicity , Cholinesterases/metabolism , Corn Oil , Insecticides/metabolism , Insecticides/toxicity , Mammals/metabolism , Mice , Rats , Rats, Sprague-Dawley
2.
Front Neuroanat ; 15: 563854, 2021.
Article in English | MEDLINE | ID: mdl-33994958

ABSTRACT

The transcription factor Nurr1 is a member of the steroid hormone nuclear receptor superfamily. Ablation of Nurr1 expression arrests mesencephalic dopamine neuron differentiation while attenuation of Nurr1 in the subiculum and hippocampus impairs learning and memory. Additionally, reduced Nurr1 expression has been reported in patients with Parkinson's disease and Alzheimer's disease. In order to better understand the overall function of Nurr1 in the brain, quantitative immunohistochemistry was used to measure cellular Nurr1 protein expression, across Nurr1 immunoreactive neuronal populations. Additionally, neuronal Nurr1 expression levels were compared between different brain regions in wild-type mice (+/+) and Nurr1 heterozygous mice (+/-). Regional Nurr1 protein was also investigated at various time points after a seizure induced by pentylenetetrazol (PTZ). Nurr1 protein is expressed in various regions throughout the brain, however, a wide range of Nurr1 expression levels were observed among various neuronal populations. Neurons in the parietal and temporal cortex (secondary somatosensory, insular, auditory, and temporal association cortex) had the highest relative Nurr1 expression (100%) followed closely by the claustrum/dorsal endopiriform cortex (85%) and then subiculum (76%). Lower Nurr1 protein levels were found in neurons in the substantia nigra pars compacta and ventral tegmental area (39%) followed by CA1 (25%) and CA3 (19%) of the hippocampus. Additionally, in the parietal and temporal cortex, two distinct populations of high and medium Nurr1 expressing neurons were observed. Comparisons between +/- and +/+ mice revealed Nurr1 protein was reduced in +/- mice by 27% in the parietal/temporal cortex, 49% in the claustrum/dorsal endopiriform cortex, 25% in the subiculum, 33% in substantia nigra pars compacta, 22% in ventral tegmental area, and 21% in CA1 region of the hippocampus. Based on these data, regional mechanisms appear to exist which can compensate for a loss of a Nurr1 allele. Following a single PTZ-induced seizure, Nurr1 protein in the dentate gyrus peaked around 2 h and returned to baseline by 8 h. Since altered Nurr1 expression has been implicated in neurologic disorders and Nurr1 agonists have showed protective effects, understanding regional protein expression of Nurr1, therefore, is necessary to understand how changes in Nurr1 expression can alter brain function.

3.
Article in English | MEDLINE | ID: mdl-28989991

ABSTRACT

The transcription factor Nurr1 is essential for dopamine neuron differentiation and is important in maintaining dopamine synthesis and neurotransmission in the adult. Reduced Nurr1 function, due to the Nurr1-null heterozygous genotype (+/-), impacts dopamine neuron function in a region specific manner resulting in a decrease in dopamine synthesis in the dorsal and ventral striatum and a decrease in tissue dopamine levels in the ventral striatum. Additionally, maintenance of tissue dopamine levels in the dorsal striatum and survival of nigrostriatal dopamine neurons with aging (>15 months) or after various toxicant treatments are impaired. To further investigate the effects of aging and the Nurr1-null heterozygous genotype, we measured regional tissue dopamine levels, dopamine neuron numbers, body weight, open field activity and rota-rod performance in young (3-5 months) and aged (15-17 months) wild-type +/+ and +/- mice. Behavioral tests revealed no significant differences in rota-rod performance or basal open field activity as a result of aging or genotype. The +/- mice did show a significant increase in open field activity after 3 min of restraint stress. No differences in tissue dopamine levels were found in the dorsal striatum. However, there were significant reductions in tissue dopamine levels in the ventral striatum, which was separated into the nucleus accumbens core and shell, in the aged +/- mice. These data indicate that the mesoaccumbens system is more susceptible to the combination of aging and the +/- genotype than the nigrostriatal system. Additionally, the effects of aging and the +/- genotype may be dependent on genetic background or housing conditions. As Nurr1 mutations have been implicated in a number of diseases associated with dopamine neurotransmission, further data is needed to understand why and how Nurr1 can have differential functions across different dopamine neuron populations in aging.

4.
Article in English | MEDLINE | ID: mdl-30035273

ABSTRACT

The effects of developmental exposure to two organophosphorus (OP) insecticides, chlorpyrifos (CPF) and methyl parathion (MPS), on cholinesterase (ChE) activity and muscarinic acetylcholine receptor (mAChR) binding were investigated in preweanling rat brain. Animals were orally gavaged daily with low, medium, and high dosages of the insecticides using an incremental dosing regimen from postnatal day 1 (PND1) to PND20. On PND12, PND17 and PND20, the cerebral cortex, corpus striatum, hippocampus, and medulla-pons were collected for determination of ChE activity, total mAChR density, and the density of the individual mAChR subtypes. ChE activity was inhibited by the medium and high dosages of CPF and MPS at equal levels in all four brain regions at all three ages examined. Exposure to both compounds decreased the levels of the M1, M2/M4, and M3 subtypes and the total mAChR level in all brain regions, but the effects varied by dosage group and brain region. On PND12, only the high dosages induced receptor changes while on PND17 and PND20, greater effects became evident. In general, the effects on the M1 subtype and total receptor levels appeared to be greater in the cerebral cortex and hippocampus than in the corpus striatum and medulla-pons. This did not appear to be the case for the M2/M4 and M3 subtypes effects. The differences between CPF and MPS were minimal even though in some cases, CPF exerted statistically greater effects than MPS did. In general, repeated exposure to organophosphorus insecticides can alter the levels of the various mAChR subtypes in various brain regions which could induce perturbation in cholinergic neurochemistry during the maturation of the brain regions.

5.
PLoS One ; 10(4): e0119280, 2015.
Article in English | MEDLINE | ID: mdl-25855987

ABSTRACT

Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population) and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%), genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/-) mice and wild-type (+/+) mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI) prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice.


Subject(s)
Behavior, Animal , Gene Deletion , Heterozygote , Nuclear Receptor Subfamily 4, Group A, Member 2/deficiency , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Toxoplasma/physiology , Toxoplasmosis/genetics , Animals , Antigens, Protozoan/immunology , Anxiety/genetics , Anxiety/parasitology , Anxiety/physiopathology , Anxiety/psychology , Avoidance Learning , Body Weight/genetics , Chronic Disease/psychology , Female , Genotype , Male , Mice , Reflex, Startle/genetics , Schizophrenia/genetics , Schizophrenia/parasitology , Schizophrenia/physiopathology , Sensory Gating/genetics , Seroconversion , Toxoplasma/immunology , Toxoplasmosis/physiopathology , Toxoplasmosis/psychology
6.
J Vis Exp ; (96): e52336, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25742438

ABSTRACT

Laser capture microdissection (LCM) is used to isolate a concentrated population of individual cells or precise anatomical regions of tissue from tissue sections on a microscope slide. When combined with immunohistochemistry, LCM can be used to isolate individual cells types based on a specific protein marker. Here, the LCM technique is described for collecting a specific population of dopamine neurons directly labeled with tyrosine hydroxylase immunohistochemistry and for isolation of the dopamine neuron containing region of the ventral tegmental area using indirect tyrosine hydroxylase immunohistochemistry on a section adjacent to those used for LCM. An infrared (IR) capture laser is used to both dissect individual neurons as well as the ventral tegmental area off glass slides and onto an LCM cap for analysis. Complete dehydration of the tissue with 100% ethanol and xylene is critical. The combination of the IR capture laser and the ultraviolet (UV) cutting laser is used to isolate individual dopamine neurons or the ventral tegmental area when using PEN membrane slides. A PEN membrane slide has significant advantages over a glass slide as it offers better consistency in capturing and collecting cells, is faster collecting large pieces of tissue, is less reliant on dehydration and results in complete removal of the tissue from the slide. Although removal of large areas of tissue from a glass slide is feasible, it is considerably more time consuming and frequently leaves some residual tissue behind. Data shown here demonstrate that RNA of sufficient quantity and quality can be obtained using these procedures for quantitative PCR measurements. Although RNA and DNA are the most commonly isolated molecules from tissue and cells collected with LCM, isolation and measurement of microRNA, protein and epigenetic changes in DNA can also benefit from the enhanced anatomical and cellular resolution obtained using LCM.


Subject(s)
Dopaminergic Neurons/cytology , Laser Capture Microdissection/methods , Ventral Tegmental Area/cytology , Animals , Immunohistochemistry , Mice
7.
J Mol Neurosci ; 46(3): 545-53, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21932041

ABSTRACT

The NR4A transcription factors NR4A1, NR4A2, and NR4A3 (also known as Nur77, Nurr1, and Nor1, respectively) share similar DNA-binding properties and have been implicated in regulation of dopamine neurotransmission genes. Our current hypothesis is that NR4A gene expression is regulated by dopamine neuron activity and that induction of NR4A genes will increase expression of dopamine neurotransmission genes. Eticlopride and γ-butyrolactone (GBL) were used in wild-type (+/+) and Nurr1-null heterozygous (+/-) mice to determine the mechanism(s) regulating Nur77 and Nurr1 expression. Laser capture microdissection and real-time PCR was used to measure Nurr1 and Nur77 mRNA levels in the ventral tegmental area (VTA). Nur77 expression was significantly elevated 1 h after both GBL (twofold) and eticlopride (fourfold). In contrast, GBL significantly decreased Nurr1 expression in both genotypes, while eticlopride significantly increased Nurr1 expression only in the +/+ mice. In a separate group of mice, haloperidol injection significantly elevated Nur77 and Nor1, but not Nurr1 mRNA in the VTA within 1 h and significantly increased tyrosine hydroxylase (TH) and dopamine transporter (DAT) mRNA expression by 4 h. These data demonstrate that the NR4A genes are dynamically regulated in dopamine neurons with maintenance of Nurr1 expression requiring dopamine neuron activity while both attenuation of dopamine autoreceptors activation and dopamine neuronal activity combining to induce Nur77 expression. Additionally, these data suggest that induction of NR4A genes could regulate TH and DAT expression and ultimately regulate dopamine neurotransmission.


Subject(s)
DNA-Binding Proteins/genetics , Dopaminergic Neurons/physiology , Nerve Tissue Proteins/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Receptors, Steroid/genetics , Receptors, Thyroid Hormone/genetics , Synaptic Transmission/genetics , Ventral Tegmental Area/physiology , Animals , Animals, Outbred Strains , DNA-Binding Proteins/metabolism , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Male , Mice , Mice, Mutant Strains , Nerve Tissue Proteins/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Receptors, Steroid/metabolism , Receptors, Thyroid Hormone/metabolism
8.
Toxicol Sci ; 100(1): 118-27, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17666426

ABSTRACT

The neurodevelopmental effects of two organophosphorus (OP) insecticides, chlorpyrifos (CPS) and methyl parathion (MPS), on cholinesterase (ChE) activity and muscarinic acetylcholine receptor (mAChR) binding were investigated in neonatal rat brain. Animals were orally gavaged using an incremental dosing regimen from postnatal day 1 (PND1) until PND8 with a low, medium, and high dosage for both CPS and MPS. On PND4 and PND8, ChE activity was measured in whole brain while the total and subtype densities of mAChRs were measured in three brain sections: area anterior to optic chiasma (anterior forebrain), area from the optic chiasma to the medulla/pons (posterior forebrain); and the medulla/pons excluding the cerebellum. The ligands 3H-pirenzepine, 3H-AF-DX 384, 3H-4-DAMP, and 3H-QNB were used to measure the maximal binding of the M1, M2/M4, and M3 subtypes and total mAChR receptors, respectively. In the anterior and the posterior forebrain, the levels of all mAChRs nearly doubled from PND4 to PND8, while in the medulla/pons, M1- and M3-subtype mAChR densities were low and did not increase and M2/M4 subtype and total mAChR slightly increased from PND4 to PND8. Reduction of ChE activity and mAChR binding by CPS or MPS was more evident in rats at PND8 than at PND4. With respect to mAChR binding, the greatest effects were observed in the medulla/pons and the least effects were observed in the posterior region of the forebrain. These results demonstrate that OPs exert adverse effects on rat central nervous system development through the cholinergic system in an age- and region-dependent manner.


Subject(s)
Brain/drug effects , Chlorpyrifos/toxicity , Cholinesterase Inhibitors/toxicity , Insecticides/toxicity , Methyl Parathion/toxicity , Receptors, Muscarinic/drug effects , Animals , Animals, Newborn , Binding Sites , Brain/enzymology , Brain/growth & development , Brain/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cholinesterases/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dose-Response Relationship, Drug , Hippocampus/drug effects , Hippocampus/metabolism , Medulla Oblongata/drug effects , Medulla Oblongata/metabolism , Pons/drug effects , Pons/metabolism , Radioligand Assay , Rats , Rats, Sprague-Dawley , Receptors, Muscarinic/metabolism , Time Factors
9.
J Neurophysiol ; 91(4): 1545-55, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14645379

ABSTRACT

Choline, a compound present in many foods, has recently been classified as an essential nutrient for humans. Studies with animal models indicate that the availability of choline during the prenatal period influences neural and cognitive development. Specifically, prenatal choline supplementation has been shown to enhance working memory and hippocampal long-term potentiation (LTP) in adult offspring. However, the cellular mechanisms underlying these effects remain unclear. Here we report that choline supplementation, during a 6-day gestational period, results in greater excitatory responsiveness, reduced slow afterhyperpolarizations (sAHPs), enhanced afterdepolarizing potentials (ADPs), larger somata, and greater basal dendritic arborization among hippocampal CA1 pyramidal cells studied postnatally in juvenile rats (20-25 days of age). These data indicate that dietary supplementation with a single nutrient, choline, during a brief, critical period of prenatal development, alters the structure and function of hippocampal pyramidal cells.


Subject(s)
Choline/pharmacology , Dietary Supplements , Hippocampus/drug effects , Prenatal Exposure Delayed Effects , Action Potentials/drug effects , Animals , Animals, Newborn , Cell Count/methods , Cell Size/drug effects , Cell Size/physiology , Electric Impedance , Electric Stimulation/methods , Female , Hippocampus/cytology , Hippocampus/physiology , In Vitro Techniques , Male , Patch-Clamp Techniques/methods , Pregnancy , Pyramidal Cells/cytology , Pyramidal Cells/drug effects , Pyramidal Cells/radiation effects , Rats , Rats, Sprague-Dawley
10.
Neurosci Lett ; 341(2): 161-3, 2003 May 01.
Article in English | MEDLINE | ID: mdl-12686390

ABSTRACT

The availability of choline during the prenatal period influences neural and cognitive development. Here we report that choline supplementation during a six-day gestational period protects against neurodegeneration in the posterior cingulate and retrosplenial cortices of adult female rats produced by systemic administration of the N-methyl-D-aspartate receptor antagonist dizocilpine (MK-801). These data show that availability of choline during a brief prenatal period diminishes vulnerability to neurotoxicity in adult offspring.


Subject(s)
Choline/pharmacology , Nootropic Agents/pharmacology , Prenatal Exposure Delayed Effects , Animals , Animals, Newborn , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Choline Deficiency/embryology , Choline Deficiency/metabolism , Diet , Dizocilpine Maleate/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Female , Gyrus Cinguli/drug effects , Gyrus Cinguli/metabolism , Gyrus Cinguli/physiopathology , Neurons/drug effects , Neurons/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley
11.
J Neurosci ; 22(1): RC195, 2002 Jan 01.
Article in English | MEDLINE | ID: mdl-11756524

ABSTRACT

Choline, a dietary compound present in many foods, has recently been classified as an essential nutrient for humans. There is evidence from animal models that the availability of choline during the prenatal period influences neural and cognitive development. Here we report that choline supplementation during a 6 d gestational period protects against neurodegeneration in the posterior cingulate and retrosplenial cortices of female adolescent rats produced by peripheral administration of the NMDA receptor antagonist dizocilpine (MK-801). These data show that availability of a single nutrient, choline, during a brief period of prenatal development diminishes vulnerability to neurotoxicity in adolescent offspring.


Subject(s)
Choline/administration & dosage , Dietary Supplements , Excitatory Amino Acid Antagonists/toxicity , Gyrus Cinguli/drug effects , Prenatal Exposure Delayed Effects , Aging/physiology , Animals , Cell Count , Cytoprotection/drug effects , Cytoprotection/physiology , Dizocilpine Maleate/toxicity , Female , Gyrus Cinguli/cytology , Male , Neurons/cytology , Neurons/drug effects , Neuroprotective Agents/administration & dosage , Pregnancy , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL