Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-456471

ABSTRACT

The COVID-19 pandemic and the SARS-CoV-2 with its variants have posed unprecedented challenges worldwide. Existing vaccines have limited effectiveness against the SARS-CoV-2 variants. Therefore, novel vaccines to match current mutated viral lineages with long-term protective immunity are urgently in demand. In the current study, we for the first time designed a recombinant Adeno-Associated Virus 5 (rAAV5)-based vaccine named as rAAV-COVID-19 vaccine (Covacinplus) by using RBD-plus of spike protein with both the single-stranded and the self-complementary AAV5 delivering vectors (ssAAV5 and scAAAV5), which provides excellent protection from SARS-CoV-2 infection. A single dose vaccination induced the strong immune response against SARS-CoV-2. The induced neutralizing antibodies (NAs) titers were maintained at a high peak level of over 1:1024 even after more than one year of injection and accompanied with functional T-cells responses in mice. Importantly, both ssAAV- and scAAV-based RBD-plus vaccines exhibited high levels of serum NAs against current circulating variants including variants Alpha, Beta, Gamma and Delta. SARS-CoV-2 virus challenge test showed that ssAAV5-RBD-plus vaccine protected both young and old age mice from SARS-CoV-2 infection in the upper and the lower respiratory tracts. Moreover, whole genome sequencing demonstrated that AAV vector DNA sequences were not found in the genome of the vaccinated mice after one year vaccination, demonstrating excellent safety of the vaccine. Taken together, this study suggests that rAAV5-based vaccine is powerful against SARS-CoV-2 and its variants with long-term protective immunity and excellent safety, which has great potential for development into prophylactic vaccination in human to end this global pandemic.

2.
Acta Pharmaceutica Sinica B ; (6): 1253-1278, 2020.
Article in English | WPRIM (Western Pacific) | ID: wpr-828809

ABSTRACT

Blocking the MDM2/X-P53 protein-protein interaction has been widely recognized as an attractive therapeutic strategy for the treatment of cancers. Numerous small-molecule MDM2 inhibitors have been reported since the release of the structure of the MDM2-P53 interaction in 1996, SAR405838, NVP-CGM097, MK-8242, RG7112, RG7388, DS-3032b, and AMG232 currently undergo clinical evaluation for cancer therapy. This review is intended to provide a comprehensive and updated overview of MDM2 inhibitors and proteolysis targeting chimera (PROTAC) degraders with a particular focus on how these inhibitors or degraders are identified from starting points, strategies employed, structure-activity relationship (SAR) studies, binding modes or co-crystal structures, biochemical data, mechanistic studies, and preclinical/clinical studies. Moreover, we briefly discuss the challenges of designing MDM2/X inhibitors for cancer therapy such as dual MDM2/X inhibition, acquired resistance and toxicity of P53 activation as well as future directions.

SELECTION OF CITATIONS
SEARCH DETAIL
...