Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38544080

ABSTRACT

Commercially available wearable devices (wearables) show promise for continuous physiological monitoring. Previous works have demonstrated that wearables can be used to detect the onset of acute infectious diseases, particularly those characterized by fever. We aimed to evaluate whether these devices could be used for the more general task of syndromic surveillance. We obtained wearable device data (Oura Ring) from 63,153 participants. We constructed a dataset using participants' wearable device data and participants' responses to daily online questionnaires. We included days from the participants if they (1) completed the questionnaire, (2) reported not experiencing fever and reported a self-collected body temperature below 38 °C (negative class), or reported experiencing fever and reported a self-collected body temperature at or above 38 °C (positive class), and (3) wore the wearable device the nights before and after that day. We used wearable device data (i.e., skin temperature, heart rate, and sleep) from the nights before and after participants' fever day to train a tree-based classifier to detect self-reported fevers. We evaluated the performance of our model using a five-fold cross-validation scheme. Sixteen thousand, seven hundred, and ninety-four participants provided at least one valid ground truth day; there were a total of 724 fever days (positive class examples) from 463 participants and 342,430 non-fever days (negative class examples) from 16,687 participants. Our model exhibited an area under the receiver operating characteristic curve (AUROC) of 0.85 and an average precision (AP) of 0.25. At a sensitivity of 0.50, our calibrated model had a false positive rate of 0.8%. Our results suggest that it might be possible to leverage data from these devices at a public health level for live fever surveillance. Implementing these models could increase our ability to detect disease prevalence and spread in real-time during infectious disease outbreaks.


Subject(s)
Sentinel Surveillance , Wearable Electronic Devices , Humans , Routinely Collected Health Data , Monitoring, Physiologic , Fever/diagnosis , Self Report
3.
Biol Sex Differ ; 14(1): 76, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37915069

ABSTRACT

BACKGROUND: Females have been historically excluded from biomedical research due in part to the documented presumption that results with male subjects will generalize effectively to females. This has been justified in part by the assumption that ovarian rhythms will increase the overall variance of pooled random samples. But not all variance in samples is random. Human biometrics are continuously changing in response to stimuli and biological rhythms; single measurements taken sporadically do not easily support exploration of variance across time scales. Recently we reported that in mice, core body temperature measured longitudinally shows higher variance in males than cycling females, both within and across individuals at multiple time scales. METHODS: Here, we explore longitudinal human distal body temperature, measured by a wearable sensor device (Oura Ring), for 6 months in females and males ranging in age from 20 to 79 years. In this study, we did not limit the comparisons to female versus male, but instead we developed a method for categorizing individuals as cyclic or acyclic depending on the presence of a roughly monthly pattern to their nightly temperature. We then compared structure and variance across time scales using multiple standard instruments. RESULTS: Sex differences exist as expected, but across multiple statistical comparisons and timescales, there was no one group that consistently exceeded the others in variance. When variability was assessed across time, females, whether or not their temperature contained monthly cycles, did not significantly differ from males both on daily and monthly time scales. CONCLUSIONS: These findings contradict the viewpoint that human females are too variable across menstrual cycles to include in biomedical research. Longitudinal temperature of females does not accumulate greater measurement error over time than do males and the majority of unexplained variance is within sex category, not between them.


Women are still excluded from research disproportionately, due in part to documented concerns that menstrual cycles make them more variable and so harder to study. In the past, we have challenged this claim, finding it does not hold for animal physiology, animal behavior, or human behavior. Here we are able to show that it does not hold in human physiology either. We analyzed 6 months of continuously collected temperature data measured by a commercial wearable device, in order to determine if it is true that females are more variable or less predictable than males. We found that temperatures mostly vary as a function of time of day and whether the individual was awake or asleep. Additionally, for some females, nightly maximum temperature contained a cyclical pattern with a period of around 28 days, consistent with menstrual cycles. The variability was different between cycling females, not cycling females, and males, but only cycling female temperature contained a monthly structure, making their changes more predictable than those of non-cycling females and males. We found the majority of unexplained variance to be within each sex/cycling category, not between them. All groups had indistinguishable measurement errors across time. This analysis of temperature suggests data-driven characteristics might be more helpful distinguishing individuals than historical categories such as binary sex. The work also supports the inclusion of females as subjects within biological research, as this inclusion does not weaken statistical comparisons, but does allow more equitable coverage of research results in the world.


Subject(s)
Menstrual Cycle , Wearable Electronic Devices , Humans , Male , Female , Mice , Animals , Young Adult , Adult , Middle Aged , Aged , Temperature , Periodicity , Sex Characteristics
4.
Cureus ; 14(9): e29266, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36277525

ABSTRACT

Background False-negative results derived from RT-PCR tests for diagnosing coronavirus disease (COVID-19) have raised questions about whether to consider them the gold standard for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using an imperfect gold standard to assess other diagnostic tests would never let the other tests show better diagnostic performance. The best strategy in such cases is to do an agreement analysis, and this study aims to estimate the agreement between real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid antigen test (RAT) for COVID-19 detection. Methods A retrospective study was done using paired data of individuals tested for COVID-19, both by RT-PCR and RAT, obtained from the virology laboratory of Government Bundelkhand Medical College, Sagar, Madhya Pradesh, India. A sample size of 93 was calculated, and the data were abstracted in a data abstraction sheet. Variables included were results of RT-PCR and RAT, age, gender, presence of symptoms, test kit used, and the time duration between sampling for RT-PCR and RAT. Apart from descriptive statistics, keeping in mind the binary outcome of RT-PCR and RAT, Cohen's kappa was calculated for agreement analysis. A p-value of <0.05 was considered significant. Results The data on 100 participants suspected to be infected with COVID-19 (58 male and 42 female) with a mean age of 39.8 (±19.0) years were analysed. The number of discordant pairs was eight. Cohen's kappa showed substantial agreement between RT-PCR and RAT, κ=0.646, (95% CI 0.420 to 0.871), p<0.001. Conclusion Considering the ease of conducting RAT with quick results and substantial agreement with RT-PCR, RAT could be a better choice in detecting SARS-CoV-2 and, hence, COVID-19 disease on a large scale.

5.
Vaccines (Basel) ; 10(2)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35214723

ABSTRACT

There is significant variability in neutralizing antibody responses (which correlate with immune protection) after COVID-19 vaccination, but only limited information is available about predictors of these responses. We investigated whether device-generated summaries of physiological metrics collected by a wearable device correlated with post-vaccination levels of antibodies to the SARS-CoV-2 receptor-binding domain (RBD), the target of neutralizing antibodies generated by existing COVID-19 vaccines. One thousand, one hundred and seventy-nine participants wore an off-the-shelf wearable device (Oura Ring), reported dates of COVID-19 vaccinations, and completed testing for antibodies to the SARS-CoV-2 RBD during the U.S. COVID-19 vaccination rollout. We found that on the night immediately following the second mRNA injection (Moderna-NIAID and Pfizer-BioNTech) increases in dermal temperature deviation and resting heart rate, and decreases in heart rate variability (a measure of sympathetic nervous system activation) and deep sleep were each statistically significantly correlated with greater RBD antibody responses. These associations were stronger in models using metrics adjusted for the pre-vaccination baseline period. Greater temperature deviation emerged as the strongest independent predictor of greater RBD antibody responses in multivariable models. In contrast to data on certain other vaccines, we did not find clear associations between increased sleep surrounding vaccination and antibody responses.

6.
Int Rev Neurobiol ; 103: 39-68, 2012.
Article in English | MEDLINE | ID: mdl-23195120

ABSTRACT

The number of available neuroscience resources (databases, tools, materials, and networks) available via the Web continues to expand, particularly in light of newly implemented data sharing policies required by funding agencies and journals. However, the nature of dense, multifaceted neuroscience data and the design of classic search engine systems make efficient, reliable, and relevant discovery of such resources a significant challenge. This challenge is especially pertinent for online databases, whose dynamic content is largely opaque to contemporary search engines. The Neuroscience Information Framework was initiated to address this problem of finding and utilizing neuroscience-relevant resources. Since its first production release in 2008, NIF has been surveying the resource landscape for the neurosciences, identifying relevant resources and working to make them easily discoverable by the neuroscience community. In this chapter, we provide a survey of the resource landscape for neuroscience: what types of resources are available, how many there are, what they contain, and most importantly, ways in which these resources can be utilized by the research community to advance neuroscience research.


Subject(s)
Computational Biology , Databases as Topic , Information Storage and Retrieval , Neurosciences , Animals , Humans
7.
Front Genet ; 3: 111, 2012.
Article in English | MEDLINE | ID: mdl-22737162

ABSTRACT

An initiative of the NIH Blueprint for neuroscience research, the Neuroscience Information Framework (NIF) project advances neuroscience by enabling discovery and access to public research data and tools worldwide through an open source, semantically enhanced search portal. One of the critical components for the overall NIF system, the NIF Standardized Ontologies (NIFSTD), provides an extensive collection of standard neuroscience concepts along with their synonyms and relationships. The knowledge models defined in the NIFSTD ontologies enable an effective concept-based search over heterogeneous types of web-accessible information entities in NIF's production system. NIFSTD covers major domains in neuroscience, including diseases, brain anatomy, cell types, sub-cellular anatomy, small molecules, techniques, and resource descriptors. Since the first production release in 2008, NIF has grown significantly in content and functionality, particularly with respect to the ontologies and ontology-based services that drive the NIF system. We present here on the structure, design principles, community engagement, and the current state of NIFSTD ontologies.

8.
BMC Syst Biol ; 5: 7, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21235794

ABSTRACT

BACKGROUND: Understanding of immune response mechanisms of pathogen-infected host requires multi-scale analysis of genome-wide data. Data integration methods have proved useful to the study of biological processes in model organisms, but their systematic application to the study of host immune system response to a pathogen and human disease is still in the initial stage. RESULTS: To study host-pathogen interaction on the systems biology level, an extension to the previously described BiologicalNetworks system is proposed. The developed methods and data integration and querying tools allow simplifying and streamlining the process of integration of diverse experimental data types, including molecular interactions and phylogenetic classifications, genomic sequences and protein structure information, gene expression and virulence data for pathogen-related studies. The data can be integrated from the databases and user's files for both public and private use. CONCLUSIONS: The developed system can be used for the systems-level analysis of host-pathogen interactions, including host molecular pathways that are induced/repressed during the infections, co-expressed genes, and conserved transcription factor binding sites. Previously unknown to be associated with the influenza infection genes were identified and suggested for further investigation as potential drug targets. Developed methods and data are available through the Java application (from BiologicalNetworks program at http://www.biologicalnetworks.org) and web interface (at http://flu.sdsc.edu).


Subject(s)
Host-Pathogen Interactions , Systems Biology/methods , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Data Mining , Databases, Factual , Humans , Mice , Orthomyxoviridae/drug effects , Orthomyxoviridae/physiology , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/metabolism , Phylogeography , Rats , Software , User-Computer Interface
9.
BMC Bioinformatics ; 11: 610, 2010 Dec 29.
Article in English | MEDLINE | ID: mdl-21190573

ABSTRACT

BACKGROUND: A significant problem in the study of mechanisms of an organism's development is the elucidation of interrelated factors which are making an impact on the different levels of the organism, such as genes, biological molecules, cells, and cell systems. Numerous sources of heterogeneous data which exist for these subsystems are still not integrated sufficiently enough to give researchers a straightforward opportunity to analyze them together in the same frame of study. Systematic application of data integration methods is also hampered by a multitude of such factors as the orthogonal nature of the integrated data and naming problems. RESULTS: Here we report on a new version of BiologicalNetworks, a research environment for the integral visualization and analysis of heterogeneous biological data. BiologicalNetworks can be queried for properties of thousands of different types of biological entities (genes/proteins, promoters, COGs, pathways, binding sites, and other) and their relations (interactions, co-expression, co-citations, and other). The system includes the build-pathways infrastructure for molecular interactions/relations and module discovery in high-throughput experiments. Also implemented in BiologicalNetworks are the Integrated Genome Viewer and Comparative Genomics Browser applications, which allow for the search and analysis of gene regulatory regions and their conservation in multiple species in conjunction with molecular pathways/networks, experimental data and functional annotations. CONCLUSIONS: The new release of BiologicalNetworks together with its back-end database introduces extensive functionality for a more efficient integrated multi-level analysis of microarray, sequence, regulatory, and other data. BiologicalNetworks is freely available at http://www.biologicalnetworks.org.


Subject(s)
Database Management Systems , Databases, Genetic , Genomics/methods , Computational Biology/methods , Genome , Internet , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis , Sequence Analysis, DNA
10.
Methods Mol Biol ; 569: 33-53, 2009.
Article in English | MEDLINE | ID: mdl-19623485

ABSTRACT

This paper presents current progress in the development of semantic data integration environment which is a part of the Biomedical Informatics Research Network (BIRN; http://www.nbirn.net) project. BIRN is sponsored by the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). A goal is the development of a cyberinfrastructure for biomedical research that supports advance data acquisition, data storage, data management, data integration, data mining, data visualization, and other computing and information processing services over the Internet. Each participating institution maintains storage of their experimental or computationally derived data. Mediator-based data integration system performs semantic integration over the databases to enable researchers to perform analyses based on larger and broader datasets than would be available from any single institution's data. This paper describes recent revision of the system architecture, implementation, and capabilities of the semantically based data integration environment for BIRN.


Subject(s)
Computational Biology , Database Management Systems , Databases, Factual , Information Storage and Retrieval , Algorithms , Computer Communication Networks , Computer Systems , Internet , National Institutes of Health (U.S.) , Programming Languages , United States , User-Computer Interface
11.
AMIA Annu Symp Proc ; : 1220, 2008 Nov 06.
Article in English | MEDLINE | ID: mdl-18999211

ABSTRACT

The broadly defined mission of the Biomedical Informatics Research Network (BIRN, www.nbirn.net) is to better understand the causes human disease and the specific ways in which animal models inform that understanding. To construct the community-wide infrastructure for gathering, organizing and managing this knowledge, BIRN is developing a federated architecture for linking multiple databases across sites contributing data and knowledge. Navigating across these distributed data sources requires a shared semantic scheme and supporting software framework to actively link the disparate repositories. At the core of this knowledge organization is BIRNLex, a formally-represented ontology facilitating data exchange. Source curators enable database interoperability by mapping their schema and data to BIRNLex semantic classes thereby providing a means to cast BIRNLex-based queries against specific data sources in the federation. We will illustrate use of the source registration, term mapping, and query tools.


Subject(s)
Brain Diseases/diagnosis , Brain Diseases/therapy , Database Management Systems , Databases, Factual , Information Dissemination/methods , Information Storage and Retrieval/methods , Medical Informatics/methods , Search Engine , Documentation/methods , Natural Language Processing , Research Design , Semantics , United States
12.
Neuroinformatics ; 6(3): 175-94, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18975148

ABSTRACT

A critical component of the Neuroscience Information Framework (NIF) project is a consistent, flexible terminology for describing and retrieving neuroscience-relevant resources. Although the original NIF specification called for a loosely structured controlled vocabulary for describing neuroscience resources, as the NIF system evolved, the requirement for a formally structured ontology for neuroscience with sufficient granularity to describe and access a diverse collection of information became obvious. This requirement led to the NIF standardized (NIFSTD) ontology, a comprehensive collection of common neuroscience domain terminologies woven into an ontologically consistent, unified representation of the biomedical domains typically used to describe neuroscience data (e.g., anatomy, cell types, techniques), as well as digital resources (tools, databases) being created throughout the neuroscience community. NIFSTD builds upon a structure established by the BIRNLex, a lexicon of concepts covering clinical neuroimaging research developed by the Biomedical Informatics Research Network (BIRN) project. Each distinct domain module is represented using the Web Ontology Language (OWL). As much as has been practical, NIFSTD reuses existing community ontologies that cover the required biomedical domains, building the more specific concepts required to annotate NIF resources. By following this principle, an extensive vocabulary was assembled in a relatively short period of time for NIF information annotation, organization, and retrieval, in a form that promotes easy extension and modification. We report here on the structure of the NIFSTD, and its predecessor BIRNLex, the principles followed in its construction and provide examples of its use within NIF.


Subject(s)
Computational Biology/methods , Databases as Topic , Neurosciences/methods , Vocabulary, Controlled , Academic Medical Centers/methods , Academic Medical Centers/trends , Animals , Biomedical Research/methods , Biomedical Research/trends , Computational Biology/trends , Databases as Topic/organization & administration , Databases as Topic/standards , Databases as Topic/trends , Humans , Information Storage and Retrieval/methods , Information Storage and Retrieval/trends , Internet/organization & administration , Internet/trends , Meta-Analysis as Topic , Neuroanatomy/methods , Neuroanatomy/trends , Neurosciences/trends , Programming Languages , Software/standards , Software/trends , Terminology as Topic
13.
Neuroinformatics ; 6(3): 149-60, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18946742

ABSTRACT

With support from the Institutes and Centers forming the NIH Blueprint for Neuroscience Research, we have designed and implemented a new initiative for integrating access to and use of Web-based neuroscience resources: the Neuroscience Information Framework. The Framework arises from the expressed need of the neuroscience community for neuroinformatic tools and resources to aid scientific inquiry, builds upon prior development of neuroinformatics by the Human Brain Project and others, and directly derives from the Society for Neuroscience's Neuroscience Database Gateway. Partnered with the Society, its Neuroinformatics Committee, and volunteer consultant-collaborators, our multi-site consortium has developed: (1) a comprehensive, dynamic, inventory of Web-accessible neuroscience resources, (2) an extended and integrated terminology describing resources and contents, and (3) a framework accepting and aiding concept-based queries. Evolving instantiations of the Framework may be viewed at http://nif.nih.gov , http://neurogateway.org , and other sites as they come on line.


Subject(s)
Computational Biology/trends , Databases as Topic , Neurosciences/trends , Academic Medical Centers/trends , Access to Information , Animals , Computational Biology/organization & administration , Humans , Internet/organization & administration , Internet/trends , Meta-Analysis as Topic , National Institutes of Health (U.S.)/organization & administration , National Institutes of Health (U.S.)/trends , Neurosciences/organization & administration , Software/trends , United States
14.
Neuroinformatics ; 6(3): 205-17, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18958629

ABSTRACT

The overarching goal of the NIF (Neuroscience Information Framework) project is to be a one-stop-shop for Neuroscience. This paper provides a technical overview of how the system is designed. The technical goal of the first version of the NIF system was to develop an information system that a neuroscientist can use to locate relevant information from a wide variety of information sources by simple keyword queries. Although the user would provide only keywords to retrieve information, the NIF system is designed to treat them as concepts whose meanings are interpreted by the system. Thus, a search for term should find a record containing synonyms of the term. The system is targeted to find information from web pages, publications, databases, web sites built upon databases, XML documents and any other modality in which such information may be published. We have designed a system to achieve this functionality. A central element in the system is an ontology called NIFSTD (for NIF Standard) constructed by amalgamating a number of known and newly developed ontologies. NIFSTD is used by our ontology management module, called OntoQuest to perform ontology-based search over data sources. The NIF architecture currently provides three different mechanisms for searching heterogeneous data sources including relational databases, web sites, XML documents and full text of publications. Version 1.0 of the NIF system is currently in beta test and may be accessed through http://nif.nih.gov.


Subject(s)
Computational Biology/methods , Databases as Topic , Neurosciences/methods , Access to Information , Animals , Computational Biology/trends , Databases as Topic/trends , Humans , Information Storage and Retrieval/methods , Information Storage and Retrieval/trends , Internet/organization & administration , Internet/trends , Meta-Analysis as Topic , Neurosciences/standards , Software/standards , Software/trends
15.
J Struct Biol ; 161(3): 220-31, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18054501

ABSTRACT

Databases have become integral parts of data management, dissemination, and mining in biology. At the Second Annual Conference on Electron Tomography, held in Amsterdam in 2001, we proposed that electron tomography data should be shared in a manner analogous to structural data at the protein and sequence scales. At that time, we outlined our progress in creating a database to bring together cell level imaging data across scales, The Cell Centered Database (CCDB). The CCDB was formally launched in 2002 as an on-line repository of high-resolution 3D light and electron microscopic reconstructions of cells and subcellular structures. It contains 2D, 3D, and 4D structural and protein distribution information from confocal, multiphoton, and electron microscopy, including correlated light and electron microscopy. Many of the data sets are derived from electron tomography of cells and tissues. In the 5 years since its debut, we have moved the CCDB from a prototype to a stable resource and expanded the scope of the project to include data management and knowledge engineering. Here, we provide an update on the CCDB and how it is used by the scientific community. We also describe our work in developing additional knowledge tools, e.g., ontologies, for annotation and query of electron microscopic data.


Subject(s)
Cellular Structures/ultrastructure , Computational Biology/methods , Databases, Factual , Imaging, Three-Dimensional , Tomography , Computational Biology/trends , Humans , Information Storage and Retrieval , Microscopy, Electron
16.
Methods Mol Biol ; 401: 23-36, 2007.
Article in English | MEDLINE | ID: mdl-18368358

ABSTRACT

Data interoperability between well-defined domains is currently performed by leveraging Web services. In the biosciences, more specifically in neuroscience, robust data interoperability is more difficult to achieve due to data heterogeneity, continuous domain changes, and the constant creation of new semantic data models (Nadkarni et al., J Am Med Inform Assoc 6, 478-93, 1999; Miller et al., J Am Med Inform Assoc 8, 34-48, 2001; Gardner et al., J Am Med Inform Assoc 8, 17-33, 2001). Data heterogeneity in neurosciences is primarily due to its multidisciplinary nature. This results in a compelling need to integrate all available neuroscience information to improve our understanding of the brain. Researchers associated with neuroscience initiatives such as the human brain project (HBP) (Koslow and Huerta, Neuroinformatics: An Overview of the Human Brain Project, 1997), the Bioinformatics Research Network (BIRN), and the Neuroinformatics Information Framework (NIF) are exploring mechanisms to allow robust interoperability between these continuously evolving neuroscience databases. To accomplish this goal, it is crucial to orchestrate technologies such as database mediators, metadata repositories, semantic metadata annotations, and ontological services. This chapter introduces the importance of database interoperability in neurosciences. We also describe current data sharing and integration mechanisms in genera. We conclude with data integration in bioscience and present approaches on neuroscience data sharing.


Subject(s)
Database Management Systems , Databases, Factual , Information Storage and Retrieval/methods , Neurosciences , Humans
17.
Front Neuroinform ; 1: 3, 2007.
Article in English | MEDLINE | ID: mdl-18974798

ABSTRACT

The complexity of the nervous system requires high-resolution microscopy to resolve the detailed 3D structure of nerve cells and supracellular domains. The analysis of such imaging data to extract cellular surfaces and cell components often requires the combination of expert human knowledge with carefully engineered software tools. In an effort to make better tools to assist humans in this endeavor, create a more accessible and permanent record of their data, and to aid the process of constructing complex and detailed computational models, we have created a core of formalized knowledge about the structure of the nervous system and have integrated that core into several software applications. In this paper, we describe the structure and content of a formal ontology whose scope is the subcellular anatomy of the nervous system (SAO), covering nerve cells, their parts, and interactions between these parts. Many applications of this ontology to image annotation, content-based retrieval of structural data, and integration of shared data across scales and researchers are also described.

18.
Nucleic Acids Res ; 34(Web Server issue): W466-71, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16845051

ABSTRACT

Systems level investigation of genomic scale information requires the development of truly integrated databases dealing with heterogeneous data, which can be queried for simple properties of genes or other database objects as well as for complex network level properties, for the analysis and modelling of complex biological processes. Towards that goal, we recently constructed PathSys, a data integration platform for systems biology, which provides dynamic integration over a diverse set of databases [Baitaluk et al. (2006) BMC Bioinformatics 7, 55]. Here we describe a server, BiologicalNetworks, which provides visualization, analysis services and an information management framework over PathSys. The server allows easy retrieval, construction and visualization of complex biological networks, including genome-scale integrated networks of protein-protein, protein-DNA and genetic interactions. Most importantly, BiologicalNetworks addresses the need for systematic presentation and analysis of high-throughput expression data by mapping and analysis of expression profiles of genes or proteins simultaneously on to regulatory, metabolic and cellular networks. BiologicalNetworks Server is available at http://brak.sdsc.edu/pub/BiologicalNetworks.


Subject(s)
Genomics/methods , Software , Systems Biology/methods , Computer Graphics , Databases, Genetic , Gene Expression Profiling , Internet , Oligonucleotide Array Sequence Analysis , Systems Integration , User-Computer Interface
19.
BMC Bioinformatics ; 7: 55, 2006 Feb 07.
Article in English | MEDLINE | ID: mdl-16464251

ABSTRACT

BACKGROUND: The goal of information integration in systems biology is to combine information from a number of databases and data sets, which are obtained from both high and low throughput experiments, under one data management scheme such that the cumulative information provides greater biological insight than is possible with individual information sources considered separately. RESULTS: Here we present PathSys, a graph-based system for creating a combined database of networks of interaction for generating integrated view of biological mechanisms. We used PathSys to integrate over 14 curated and publicly contributed data sources for the budding yeast (S. cerevisiae) and Gene Ontology. A number of exploratory questions were formulated as a combination of relational and graph-based queries to the integrated database. Thus, PathSys is a general-purpose, scalable, graph-data warehouse of biological information, complete with a graph manipulation and a query language, a storage mechanism and a generic data-importing mechanism through schema-mapping. CONCLUSION: Results from several test studies demonstrate the effectiveness of the approach in retrieving biologically interesting relations between genes and proteins, the networks connecting them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network integration and a hypothesis generator system. The PathSys's client software, named BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.


Subject(s)
Computer Graphics , Databases, Protein , Information Storage and Retrieval/methods , Protein Interaction Mapping/methods , Software , Systems Biology/methods , User-Computer Interface , Computer Simulation , Models, Biological , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction/physiology , Systems Integration
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(1 Pt 1): 011507, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16089970

ABSTRACT

The kinetics of phase separation of a homogeneous polyelectrolytic solution into a dense polymer-rich coacervate and the dilute supernatant phase is discussed through statistical thermodynamics. It has been shown that the coacervate phase is associated with higher internal pressure, consequently giving rise to syneresis. Physical conditions for phase separations has been deduced explicitly which reveals that sigma(2)/qrt[I] > or = constant (where sigma is polyelectrolyte charge density and I is solution ionic strength), consistent with experimental observations. In the lattice model, r is the number of sites occupied by the polymer having a volume critical fraction psi(2c), it was found that phase separation would ensue when sigma(3)r > or = (64/9 alpha(2)) [psi(2c)/(1 - omega(2c))(2)], which reduces to (sigma(3)r/psi(2c)) > or = (64/9 alpha(2)) approximately 0.45 at 20 degrees C for psi(2c) < 1. The separation kinetics mimics a spinodal decomposition process. Rate of release of supernatant due to syneresis was found to be independent of the initial coacervate mass. Syneresis results are discussed in the context of temporal evolution of self-organization in polymer melts through Avrami model.

SELECTION OF CITATIONS
SEARCH DETAIL
...