Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 11(6): 288, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34109091

ABSTRACT

The aim of the present study was to develop, optimize brucine-loaded transliposomes (BRC-TL) formulation for dermal delivery of brucine for skin cancer. The BRC-TL formulations were evaluated for vesicle size, entrapment efficiency, and in vitro drug release. The optimized formulation was further evaluated for skin penetration by confocal laser microscopy and dermatokinetic study. The optimized BRC-TL formulation presented sealed lamellar shaped vesicles, with vesicles size, polydispersity index, entrapment efficiency, and in vitro drug release of 136.20 ± 2.87 nm, 0.354 ± 0.02, 86.01 ± 1.27%, and 83.09 ± 2.07%, respectively. Ex vivo permeation study showed that, developed BRC-TL formulation had a 2.4-fold increment in permeation as compared to BRC suspension. Texture analysis showed that the BRC-TL gel presented firmness of 158.91 g, consistency of 615.03 g/s, cohesiveness of - 115.26 g and a viscosity index of - 472.05 g/s. The confocal images of rat skin clearly showed the deeper penetration of rhodamine B-loaded TL formulation as compared to the Rhodamine B-hydro alcoholic solution. The optimized BRC-TL formulation demonstrated significantly higher cytotoxicity than placebo liposome and BRC suspension (P < 0.05). Further, the BRC-TL nanogel treated rat skin showed a substantial increase in CSkin max and AUC0-8 in comparison to rat skin treated with BRC conventional gel (P < 0.05). The data revealed that the developed TLs formulation could be a promising drug nanocarrier for brucine dermal delivery in the treatment of skin cancer.

2.
J Med Internet Res ; 16(11): e250, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25406040

ABSTRACT

BACKGROUND: Existing influenza surveillance in the United States is focused on the collection of data from sentinel physicians and hospitals; however, the compilation and distribution of reports are usually delayed by up to 2 weeks. With the popularity of social media growing, the Internet is a source for syndromic surveillance due to the availability of large amounts of data. In this study, tweets, or posts of 140 characters or less, from the website Twitter were collected and analyzed for their potential as surveillance for seasonal influenza. OBJECTIVE: There were three aims: (1) to improve the correlation of tweets to sentinel-provided influenza-like illness (ILI) rates by city through filtering and a machine-learning classifier, (2) to observe correlations of tweets for emergency department ILI rates by city, and (3) to explore correlations for tweets to laboratory-confirmed influenza cases in San Diego. METHODS: Tweets containing the keyword "flu" were collected within a 17-mile radius from 11 US cities selected for population and availability of ILI data. At the end of the collection period, 159,802 tweets were used for correlation analyses with sentinel-provided ILI and emergency department ILI rates as reported by the corresponding city or county health department. Two separate methods were used to observe correlations between tweets and ILI rates: filtering the tweets by type (non-retweets, retweets, tweets with a URL, tweets without a URL), and the use of a machine-learning classifier that determined whether a tweet was "valid", or from a user who was likely ill with the flu. RESULTS: Correlations varied by city but general trends were observed. Non-retweets and tweets without a URL had higher and more significant (P<.05) correlations than retweets and tweets with a URL. Correlations of tweets to emergency department ILI rates were higher than the correlations observed for sentinel-provided ILI for most of the cities. The machine-learning classifier yielded the highest correlations for many of the cities when using the sentinel-provided or emergency department ILI as well as the number of laboratory-confirmed influenza cases in San Diego. High correlation values (r=.93) with significance at P<.001 were observed for laboratory-confirmed influenza cases for most categories and tweets determined to be valid by the classifier. CONCLUSIONS: Compared to tweet analyses in the previous influenza season, this study demonstrated increased accuracy in using Twitter as a supplementary surveillance tool for influenza as better filtering and classification methods yielded higher correlations for the 2013-2014 influenza season than those found for tweets in the previous influenza season, where emergency department ILI rates were better correlated to tweets than sentinel-provided ILI rates. Further investigations in the field would require expansion with regard to the location that the tweets are collected from, as well as the availability of more ILI data.


Subject(s)
Influenza, Human/epidemiology , Population Surveillance/methods , Social Media , California/epidemiology , Emergency Service, Hospital/statistics & numerical data , Humans , Reproducibility of Results , Seasons , United States/epidemiology
3.
J Med Internet Res ; 15(10): e237, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24158773

ABSTRACT

BACKGROUND: Surveillance plays a vital role in disease detection, but traditional methods of collecting patient data, reporting to health officials, and compiling reports are costly and time consuming. In recent years, syndromic surveillance tools have expanded and researchers are able to exploit the vast amount of data available in real time on the Internet at minimal cost. Many data sources for infoveillance exist, but this study focuses on status updates (tweets) from the Twitter microblogging website. OBJECTIVE: The aim of this study was to explore the interaction between cyberspace message activity, measured by keyword-specific tweets, and real world occurrences of influenza and pertussis. Tweets were aggregated by week and compared to weekly influenza-like illness (ILI) and weekly pertussis incidence. The potential effect of tweet type was analyzed by categorizing tweets into 4 categories: nonretweets, retweets, tweets with a URL Web address, and tweets without a URL Web address. METHODS: Tweets were collected within a 17-mile radius of 11 US cities chosen on the basis of population size and the availability of disease data. Influenza analysis involved all 11 cities. Pertussis analysis was based on the 2 cities nearest to the Washington State pertussis outbreak (Seattle, WA and Portland, OR). Tweet collection resulted in 161,821 flu, 6174 influenza, 160 pertussis, and 1167 whooping cough tweets. The correlation coefficients between tweets or subgroups of tweets and disease occurrence were calculated and trends were presented graphically. RESULTS: Correlations between weekly aggregated tweets and disease occurrence varied greatly, but were relatively strong in some areas. In general, correlation coefficients were stronger in the flu analysis compared to the pertussis analysis. Within each analysis, flu tweets were more strongly correlated with ILI rates than influenza tweets, and whooping cough tweets correlated more strongly with pertussis incidence than pertussis tweets. Nonretweets correlated more with disease occurrence than retweets, and tweets without a URL Web address correlated better with actual incidence than those with a URL Web address primarily for the flu tweets. CONCLUSIONS: This study demonstrates that not only does keyword choice play an important role in how well tweets correlate with disease occurrence, but that the subgroup of tweets used for analysis is also important. This exploratory work shows potential in the use of tweets for infoveillance, but continued efforts are needed to further refine research methods in this field.


Subject(s)
Influenza, Human/epidemiology , Internet , Whooping Cough/epidemiology , Humans , Incidence
SELECTION OF CITATIONS
SEARCH DETAIL
...