Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 18(4): e0011451, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38630832

ABSTRACT

Systems for disease vector control should be effective, efficient, and flexible to be able to tackle contemporary challenges and threats in the control and elimination of vector-borne diseases. As a priority activity towards the strengthening of vector control systems, it has been advocated that countries conduct a vector-control needs assessment. A review was carried out of the perceived needs for disease vector control programs among eleven countries and subnational states in South Asia and the Middle East. In each country or state, independent teams conducted vector control needs assessment with engagement of stakeholders. Important weaknesses were described for malaria, dengue and leishmaniases regarding vector surveillance, insecticide susceptibility testing, monitoring and evaluation of operations, entomological capacity and laboratory infrastructure. In addition, community mobilization and intersectoral collaboration showed important gaps. Countries and states expressed concern about insecticide resistance that could reduce the continued effectiveness of interventions, which demands improved monitoring. Moreover, attainment of disease elimination necessitates enhanced vector surveillance. Vector control needs assessment provided a useful planning tool for systematic strengthening of vector control systems. A limitation in conducting the vector control needs assessment was that it is time- and resource-intensive. To increase the feasibility and utility of national assessments, an abridged version of the guidance should focus on operationally relevant topics of the assessment. Similar reviews are needed in other regions with different contextual conditions.


Subject(s)
Vector Borne Diseases , Middle East/epidemiology , Humans , Vector Borne Diseases/prevention & control , Vector Borne Diseases/transmission , Asia/epidemiology , Animals , Needs Assessment , Dengue/prevention & control , Dengue/epidemiology , Dengue/transmission , Malaria/prevention & control , Malaria/epidemiology , Insecticides , Disease Vectors , Asia, Southern
2.
Malar J ; 15(1): 583, 2016 Dec 03.
Article in English | MEDLINE | ID: mdl-27912758

ABSTRACT

BACKGROUND: Recent reports of emergence and spread of artemisinin resistance in the Southeast Asia region, including Myanmar, pose a greater threat to malaria control and elimination in India. Whole genome sequencing studies have associated mutations in the K13 propeller gene (k13), PF3D7_1343700 with artemisinin resistance both in vitro and in vivo. The aim of the present study was to find the k13 gene polymorphisms in Plasmodium falciparum parasites from the three sites in the Northeast region of India, bordering Bangladesh and Myanmar. METHODS: A total of 254 samples collected during 2014-2015 from Tripura, Mizoram and Arunachal Pradesh states in the Northeast region of India were used to obtain the full-length k13 gene sequences. RESULTS: Three non-synonymous (NS) mutations: two in the propeller region, namely at codon 446 and 578, were observed besides one at codon 189 in the non-propeller region. The treatment outcome was not affected by these mutations at any of the sites. In addition, microsatellite variation in the N-terminus of the k13 protein was observed at all the study sites. CONCLUSION: This is the first study to document the presence of F446I NS mutation in the k13 propeller region from Changlang district, Arunachal Pradesh, a site adjoining the Indo-Myanmar border region, where this mutation is highly prevalent. In addition, NS mutation A578S has been observed only at Lunglei district, Mizoram, a site bordering Bangladesh and K189T mutation with relatively higher frequency in Mizoram and Tripura states. The presence of F446I mutation in a region close to the Myanmar border is notable. Considering the spread of anti-malarial drug resistance from Southeast Asia to the Northeast region of India in the past, there is an urgent need to undertake systematic mapping studies to ascertain the role and extent of this mutation in artemisinin resistance in this region of country.


Subject(s)
Malaria, Falciparum/parasitology , Mutation, Missense , Plasmodium falciparum/classification , Plasmodium falciparum/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Drug Resistance , Humans , India/epidemiology , Molecular Epidemiology , Plasmodium falciparum/isolation & purification , Protozoan Proteins/chemistry , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...