Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Biofuels Bioprod ; 17(1): 23, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38350992

ABSTRACT

BACKGROUND: Marine cyanobacteria offer many sustainability advantages, such as the ability to fix atmospheric CO2, very fast growth and no dependence on freshwater for culture. Cyanobacterial biomass is a rich source of sugars and proteins, two essential nutrients for culturing any heterotroph. However, no previous study has evaluated their application as a feedstock for fungal bioprocesses. RESULTS: In this work, we cultured the marine cyanobacterium Synechococcus sp. PCC 7002 in a 3-L externally illuminated bioreactor with working volume of 2 L with a biomass productivity of ~ 0.8 g L-1 day-1. Hydrolysis of the biomass with acids released proteins and hydrolyzed glycogen while hydrolysis of the biomass with base released only proteins but did not hydrolyze glycogen. Among the different acids tested, treatment with HNO3 led to the highest release of proteins and glucose. Cyanobacterial biomass hydrolysate (CBH) prepared in HNO3 was used as a medium to produce cellulase enzyme by the Penicillium funiculosum OAO3 strain while CBH prepared in HCl and treated with charcoal was used as a medium for citric acid by Aspergillus tubingensis. Approximately 50% higher titers of both products were obtained compared to traditional media. CONCLUSIONS: These results show that the hydrolysate of marine cyanobacteria is an effective source of nutrients/proteins for fungal bioprocesses.

2.
Appl Microbiol Biotechnol ; 105(20): 8009-8018, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34553250

ABSTRACT

While Saccharomyces cerevisiae is a popular organism to produce ethanol, its fermentation performance is affected at high sugar concentrations due to osmotic stress. We hypothesized that adaptation under ionic stress conditions will improve the fermentation performance at high sugar concentrations due to cross-stress adaptation. We, therefore, adapted a high-performance yeast strain, S. cerevisiae CEN.PK 122, to increasing salt concentrations in an industrial medium. Control cells were adapted in the medium without added salt. The cells adapted to 3.5% (w/v) salt concentration demonstrated a superior performance when fermenting 10-30% (w/v) glucose. When fermenting 30% (w/v) glucose, the ethanol yields of the adapted cells (0.49 ± 0.01 g g-1) were about 30% higher than the control cells (0.37 ± 0.01 g g-1) and are comparable with the best reported to date for any medium employed. Similar improvements were also observed when fermenting 10% (w/v) sucrose. However, little improvement in fermentation was observed at the higher temperature tested (40 °C), even though the growth of the adapted cells was greater when tested in YPD medium. The improvements in fermentation at 30 °C were primarily related to the faster growth of the adapted cells and not to an increase in specific intake rates. Additionally, a significantly reduced lag phase was also observed when fermenting 30% (w/v) glucose. Thus, our work shows the application of a simple strategy to significantly improve high-gravity fermentation (HGF) performance through adaptation. KEY POINTS: • Cell adapted on 3.5% NaCl made 28% more ethanol when fermenting 30% glucose. • The adapted cells had reduced lag phase, grew faster, and produced less glycerol. • The improvements were not related to increased specific rates of production.


Subject(s)
Hypergravity , Saccharomyces cerevisiae , Adaptation, Physiological , Ethanol , Fermentation
3.
Front Microbiol ; 12: 607411, 2021.
Article in English | MEDLINE | ID: mdl-33927699

ABSTRACT

Sodium dependent bicarbonate transporter, SbtA is a high-affinity, inducible bicarbonate transporter in cyanobacterial cells. Our previous work has shown that overexpression of this transporter can significantly increase growth and glycogen accumulation in Synechococcus sp. PCC 7002 cells. In this work, we have tested the effect of two different RBS sequences (RBS1: GGAGGA and RBS2: AGGAGA) and three different promoters (PcpcB, PcpcB 560, and PrbcL 2) on the growth and glycogen production in SbtA-overexpressing Synechococcus sp. PCC 7002 cells. Our results show that PcpcB or PcpcB 560 were more effective than PrbcL 2 in increasing the growth and glycogen content. The choice of RBS sequence had relatively minor effect, though RBS2 was more effective than RBS1. The transformant E, with PcpcB 560 and RBS2, showed the highest growth. The biomass after 5 days of growth on air or 1% CO2 was increased by about 90% in the strain E compared to PCC 7002 cells. All transformants overexpressing SbtA had higher glycogen content. However, growing the cells with bubbling of 1% CO2 did not increase cellular glycogen content any further. The strain E had about 80% higher glycogen content compared to WT PCC 7002 cells. Therefore, the glycogen productivity of the strain E grown with air-bubbling was about 2.5-fold that of the WT PCC 7002 cells grown similarly. Additionally, some of the transformants had higher chlorophyll content while all the transformants had higher carotenoid content compared to the PCC 7002 cells, suggesting interaction between carbon transport and pigment levels. Thus, this work shows that the choice of photosynthetic promoters and RBSs sequences can impact growth and glycogen accumulation in SbtA-overexpressing cells.

4.
Biotechnol Biofuels ; 13: 17, 2020.
Article in English | MEDLINE | ID: mdl-32015756

ABSTRACT

BACKGROUND: Synechococcus sp. PCC 7002 is an attractive organism as a feedstock and for photoautotrophic production of biofuels and biochemicals due to its fast growth and ability to grow in marine/brackish medium. Previous studies suggest that the growth of this organism is limited by the HCO3 - transport across the cytoplasmic membrane. Tools for genetic engineering are well established for this cyanobacterium, which makes it possible to overexpress genes of interest. RESULTS: In this work, we overexpressed two different native Na+-dependent carbon transporters viz., SbtA and BicA in Synechococcus sp. PCC 7002 cells under the influence of a strong light-inducible promoter and a strong RBS sequence. The overexpression of these transporters enhanced biomass by about 50%, increased intracellular glycogen about 50%, and increased extracellular carbohydrate up to threefold. Importantly, the biomass and glycogen productivity of the transformants with air bubbling was even higher than that of WT cells with 1% CO2 bubbling. The overexpression of these transporters was associated with an increased carotenoid content without altering the chl a content. CONCLUSIONS: Our work shows the utility of increased carbon transport in improving the growth as well as product formation in a marine cyanobacterium and will serve to increase the utility of this organism as a potential cell factory.

SELECTION OF CITATIONS
SEARCH DETAIL
...