Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(23): e2400727121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38819998

ABSTRACT

Understanding the interplay between charge, nematic, and structural ordering tendencies in cuprate superconductors is critical to unraveling their complex phase diagram. Using pump-probe time-resolved resonant X-ray scattering on the (0 0 1) Bragg peak at the Cu [Formula: see text] and O [Formula: see text] resonances, we investigate nonequilibrium dynamics of [Formula: see text] nematic order and its association with both charge density wave (CDW) order and lattice dynamics in La[Formula: see text]Eu[Formula: see text]Sr[Formula: see text]CuO[Formula: see text]. The orbital selectivity of the resonant X-ray scattering cross-section allows nematicity dynamics associated with the planar O 2[Formula: see text] and Cu 3[Formula: see text] states to be distinguished from the response of anisotropic lattice distortions. A direct time-domain comparison of CDW translational-symmetry breaking and nematic rotational-symmetry breaking reveals that these broken symmetries remain closely linked in the photoexcited state, consistent with the stability of CDW topological defects in the investigated pump fluence regime.

2.
Sci Rep ; 14(1): 7676, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561433

ABSTRACT

The conserved miR-183/96/182 cluster (miR-183C) is expressed in both corneal resident myeloid cells (CRMCs) and sensory nerves (CSN) and modulates corneal immune/inflammatory responses. To uncover cell type-specific roles of miR-183C in CRMC and CSN and their contributions to corneal physiology, myeloid-specific miR-183C conditional knockout (MS-CKO), and sensory nerve-specific CKO (SNS-CKO) mice were produced and characterized in comparison to the conventional miR-183C KO. Immunofluorescence and confocal microscopy of flatmount corneas, corneal sensitivity, and tear volume assays were performed in young adult naïve mice; 3' RNA sequencing (Seq) and proteomics in the trigeminal ganglion (TG), cornea and CRMCs. Our results showed that, similar to conventional KO mice, the numbers of CRMCs were increased in both MS-CKO and SNS-CKO vs age- and sex-matched WT control littermates, suggesting intrinsic and extrinsic regulations of miR-183C on CRMCs. The number of CRMCs was increased in male vs female MS-CKO mice, suggesting sex-dependent regulation of miR-183C on CRMCs. In the miR-183C KO and SNS-CKO, but not the MS-CKO mice, CSN density was decreased in the epithelial layer of the cornea, but not the stromal layer. Functionally, corneal sensitivity and basal tear volume were reduced in the KO and SNS-CKO, but not the MS-CKO mice. Tear volume in males is consistently higher than female WT mice. Bioinformatic analyses of the transcriptomes revealed a series of cell-type specific target genes of miR-183C in TG sensory neurons and CRMCs. Our data elucidate that miR-183C imposes intrinsic and extrinsic regulation on the establishment and function of CSN and CRMCs by cell-specific target genes. miR-183C modulates corneal sensitivity and tear production through its regulation of corneal sensory innervation.


Subject(s)
MicroRNAs , Nervous System Physiological Phenomena , Mice , Male , Female , Animals , Cornea/innervation , Trigeminal Ganglion/physiology , MicroRNAs/genetics , Myeloid Cells
3.
Chem Biodivers ; 21(2): e202301323, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38116925

ABSTRACT

Regio- and stereoselective 1,3-dipolar cycloadditions of C-(3-pyridyl)-N-phenylnitrone (2) with variedly substituted dipolarophiles (3, 4) were carried out to obtain substituted pyridyl-isoxazolidines (5-8). Reductive cleavage of pyridyl-isoxazolidines (5-8) with ammonium formate, methanol-THF solvents, at ambient temperature, in the presence of Pd/C provided a facile route for the synthesis of ß3 -and ß2,3 -amino alcohols (9-12), with a substitution pattern having pronounced influence on torsional angles. The obtained compounds (9-12) are valuable scaffolds which can be utilized for peptidomimetics. Thus, the present methodology for reductive opening of isoxazolidine ring avoids the disadvantages of using expensive apparatus and hazards involved in the use of hydrogen gas. The preferential formation of amino-alcohols in case of bicyclic isoxazolidines (8a-c), which precludes any recyclization is rationalized by DFT calculations.


Subject(s)
Amino Alcohols , Peptidomimetics , Cycloaddition Reaction , Cyclization
4.
Ocul Surf ; 30: 17-41, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37536656

ABSTRACT

PURPOSE: The conserved miR-183/96/182 cluster (miR-183C) regulates both corneal sensory innervation and corneal resident immune cells (CRICs). This study is to uncover its role in CRICs and in shaping the corneal cellular landscape at a single-cell (sc) level. METHODS: Corneas of naïve, young adult [2 and 6 months old (mo)], female miR-183C knockout (KO) mice and wild-type (WT) littermates were harvested and dissociated into single cells. Dead cells were removed using a Dead Cell Removal kit. CD45+ CRICs were enriched by Magnetic Activated Cell Sorting (MACS). scRNA libraries were constructed and sequenced followed by comprehensive bioinformatic analyses. RESULTS: The composition of major cell types of the cornea stays relatively stable in WT mice from 2 to 6 mo, however the compositions of subtypes of corneal cells shift with age. Inactivation of miR-183C disrupts the stability of the major cell-type composition and age-related transcriptomic shifts of subtypes of corneal cells. The diversity of CRICs is enhanced with age. Naïve mouse cornea contains previously-unrecognized resident fibrocytes and neutrophils. Resident macrophages (ResMφ) adopt cornea-specific function by expressing abundant extracellular matrix (ECM) and ECM organization-related genes. Naïve cornea is endowed with partially-differentiated proliferative ResMφ and contains microglia-like Mφ. Resident lymphocytes, including innate lymphoid cells (ILCs), NKT and γδT cells, are the major source of innate IL-17a. miR-183C limits the diversity and polarity of ResMφ. CONCLUSION: miR-183C serves as a checkpoint for CRICs and imposes a global regulation of the cellular landscape of the cornea.


Subject(s)
Cornea , Immunity, Innate , MicroRNAs , Animals , Female , Mice , Cornea/metabolism , Immunity, Innate/genetics , Lymphocytes , Macrophages , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics
5.
Proc Natl Acad Sci U S A ; 118(34)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34413195

ABSTRACT

During the last decade, translational and rotational symmetry-breaking phases-density wave order and electronic nematicity-have been established as generic and distinct features of many correlated electron systems, including pnictide and cuprate superconductors. However, in cuprates, the relationship between these electronic symmetry-breaking phases and the enigmatic pseudogap phase remains unclear. Here, we employ resonant X-ray scattering in a cuprate high-temperature superconductor [Formula: see text] (Nd-LSCO) to navigate the cuprate phase diagram, probing the relationship between electronic nematicity of the Cu 3d orbitals, charge order, and the pseudogap phase as a function of doping. We find evidence for a considerable decrease in electronic nematicity beyond the pseudogap phase, either by raising the temperature through the pseudogap onset temperature T* or increasing doping through the pseudogap critical point, p*. These results establish a clear link between electronic nematicity, the pseudogap, and its associated quantum criticality in overdoped cuprates. Our findings anticipate that electronic nematicity may play a larger role in understanding the cuprate phase diagram than previously recognized, possibly having a crucial role in the phenomenology of the pseudogap phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...