Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Nanoscale Horiz ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958571

ABSTRACT

The growth of graphene on a metal substrate using chemical vapor deposition (CVD), assisted by hydrocarbons such as CH4, C3H8, C2H6, etc. leads to the formation of carbon clusters, amorphous carbon, or any other structure. These carbon species are considered as unwanted impurities; thus a conventional etching step is used simultaneously with CVD graphene growth to remove them using an etching agent. Meanwhile, art etching is a specific method of producing controlled non-Euclidean and Euclidean geometries by employing intricate and precise etching parameters or integrated growth/etching modes. Agents such as H2, O2, CH4, Ar, and others are applied as art etching agents to support the art etching technology. This technique can generate nanopores and customize the properties of graphene, facilitating specific applications such as nanodevices, nanosensors, nanofilters, etc. This comprehensive review investigates how precursor gases concurrently induce graphene growth and art etching during a chemical vapor deposition process, resulting in beautifully etched patterns. Furthermore, it discusses the techniques leading to the creation of these patterns. Finally, the challenges, uses, and perspectives of these non-Euclidean and Euclidean-shaped art etched graphene geometries are discussed.

2.
Bioresour Technol ; : 131039, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944313

ABSTRACT

In this work, carbonization and subsequent activation procedures were adopted to synthesize waste shea butter shells into oxygen-rich interconnected porous activated carbon (SAC_x, x is the mass ratio of KOH used for activation). The SAC_1.5 electrode material showed outstanding electrochemical performance with high specific capacitance (286.6F/g) and improved rate capability, owing to various synergistic effects originating from a high specific surface area (1233.5 m2/g) and O-rich content. The SAC_1.5-based symmetric device delivered an impressive specific capacitance of 91.6F/g with a high energy density of 12.7 Wh/kg at 0.5 A/g. The device recorded 99.9 % capacitance retention after 10,000 charge-discharge cycles. The symmetric supercapacitor device successfully lit an LED bulb for more than 1 h, signifying the potential of bio-waste as an efficient carbon precursor for electrode material in practical supercapacitors. This work offers an efficient, affordable, and environmentally friendly strategy for potential renewable energy storage devices.

3.
Polymers (Basel) ; 16(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38891530

ABSTRACT

Over the past few decades, polymer composites have received significant interest and become protagonists due to their enhanced properties and wide range of applications. Herein, we examined the impact of filler and flame retardants in hemp seed oil-based rigid polyurethane foam (RPUF) composites' performance. Firstly, the hemp seed oil (HSO) was converted to a corresponding epoxy analog, followed by a ring-opening reaction to synthesize hemp bio-polyols. The hemp polyol was then reacted with diisocyanate in the presence of commercial polyols and other foaming components to produce RPUF in a single step. In addition, different fillers like microcrystalline cellulose, alkaline lignin, titanium dioxide, and melamine (as a flame retardant) were used in different wt.% ratios to fabricate composite foam. The mechanical characteristics, thermal degradation behavior, cellular morphology, apparent density, flammability, and closed-cell contents of the generated composite foams were examined. An initial screening of different fillers revealed that microcrystalline cellulose significantly improves the mechanical strength up to 318 kPa. The effect of melamine as a flame retardant in composite foam was also examined, which shows the highest compression strength of 447 kPa. Significantly better anti-flaming qualities than those of neat foam based on HSO have been reflected using 22.15 wt.% of melamine, with the lowest burning time of 4.1 s and weight loss of 1.88 wt.%. All the composite foams showed about 90% closed-cell content. The present work illustrates the assembly of a filler-based polyurethane foam composite with anti-flaming properties from bio-based feedstocks with high-performance applications.

4.
Chem Soc Rev ; 53(10): 5190-5226, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38586901

ABSTRACT

Etching technology - one of the representative modern semiconductor device makers - serves as a broad descriptor for the process of removing material from the surfaces of various materials, whether partially or entirely. Meanwhile, thinning technology represents a novel and highly specialized approach within the realm of etching technology. It indicates the importance of achieving an exceptionally sophisticated and precise removal of material, layer-by-layer, at the nanoscale. Notably, thinning technology has gained substantial momentum, particularly in top-down strategies aimed at pushing the frontiers of nano-worlds. This rapid development in thinning technology has generated substantial interest among researchers from diverse backgrounds, including those in the fields of chemistry, physics, and engineering. Precisely and expertly controlling the layer numbers of 2D materials through the thinning procedure has been considered as a crucial step. This is because the thinning processes lead to variations in the electrical and optical characteristics. In this comprehensive review, the strategies for top-down thinning of representative 2D materials (e.g., graphene, black phosphorus, MoS2, h-BN, WS2, MoSe2, and WSe2) based on conventional plasma-assisted thinning, integrated cyclic plasma-assisted thinning, laser-assisted thinning, metal-assisted splitting, and layer-resolved splitting are covered in detail, along with their mechanisms and benefits. Additionally, this review further explores the latest advancements in terms of the potential advantages of semiconductor devices achieved by top-down 2D material thinning procedures.

5.
ACS Omega ; 9(8): 8666-8686, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38434856

ABSTRACT

Bioplastics are one of the answers that can point society toward a sustainable future. Under this premise, the synthesis of polymers with competitive properties using low-cost starting materials is a highly desired factor in the industry. Also, tackling environmental issues such as nonbiodegradable waste generation, high carbon footprint, and consumption of nonrenewable resources are some of the current concerns worldwide. The scientific community has been placing efforts into the biosynthesis of polymers using bacteria and other microbes. These microorganisms can be convenient reactors to consume food and agricultural wastes and convert them into biopolymers with inherently attractive properties such as biodegradability, biocompatibility, and appreciable mechanical and chemical properties. Such biopolymers can be applied to several fields such as packing, cosmetics, pharmaceutical, medical, biomedical, and agricultural. Thus, intending to elucidate the science of microbes to produce polymers, this review starts with a brief introduction to bioplastics by describing their importance and the methods for their production. The second section dives into the importance of bacteria regarding the biochemical routes for the synthesis of polymers along with their advantages and disadvantages. The third section covers some of the main parameters that influence biopolymers' production. Some of the main applications of biopolymers along with a comparison between the polymers obtained from microorganisms and the petrochemical-based ones are presented. Finally, some discussion about the future aspects and main challenges in this field is provided to elucidate the main issues that should be tackled for the wide application of microorganisms for the preparation of bioplastics.

6.
ACS Omega ; 9(9): 10738-10747, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38463334

ABSTRACT

One possible approach to achieving sustainable development in the materials sector is to produce polymers from plant oils (POs), which are renewable and environmentally beneficial. Polymers with a high concentration of functional groups can be used as cross-linking agents to enhance the properties of epoxidized POs (epoxidation of plant oil)-based polymers. In this work, a unique resin with novel properties and potential uses was produced by cross-linking epoxidized soybean oil (ESO) with branched and flexible polyamines by ring-opening and amidation polymerizations. This approach is straightforward and ecologically benign. After curing, melamine pentane diamine (MPD) polymer maintained its position as the strongest structural adhesive among the synthesized resins, with a bonding strength of almost 2000 kPa for stainless steel; irrespective of the temperature, stainless steel consistently outperforms melamine ethylene diamine-ESO resin in strength comparisons. At 100 °C, stainless steel has a lap shear strength of about 300 kPa, which is far higher than copper and aluminum; at 180 °C, this value increases by another 750 kPa. While MPD-ESO resin has a shear strength of 1996 kPa at 180 °C, melamine butane diamine-ESO resin has a shear strength of only 1220 kPa.

7.
ACS Omega ; 9(5): 5862-5875, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38343913

ABSTRACT

Synthesizing polymeric materials that are both sustainable and practical has become a priority. Polyurethanes (PUs) are becoming more popular because of their countless applications and exclusive properties in many sectors. While considering the current issue of environmental problems and the excessive use of petroleum products, nonisocyanate PU (NIPU) are favored due to their sustainability and low toxicity compared to conventional PU. In this work, flexible NIPU films were made using a green and facile method. For that, soybean oil (SBO) was used as the starting material and converted into epoxide SBO, followed by its chemical conversion into carbonated SBO (CSBO) using carbon dioxide gas. Following that, the CSBO reacted with three different aliphatic amines, namely, 1,2-ethylenediamine, 1,4-butylenediamine, and 1,6-hexamethylenediamine, in a solventless and catalyst-free system. The films were cast and cured at 85 °C for different curing times. The effects of the aliphatic diamines and curing times on the NIPU films were evaluated. The individual materials were confirmed with Fourier transform infrared, 1H nuclear magnetic resonance, and gel permeation chromatography. To analyze the thermal and mechanical properties, thermogravimetric analysis, dynamic mechanical analysis, and differential scanning calorimetry were performed. Furthermore, mechanical tests such as hardness and tensile strength were also performed along with the degree of swelling, gel content, and contact angle by using several solvents. This study elucidated the structure-property relationship based on the effect of curing time and aliphatic chain size of diamines in the properties of a NIPU film. The satisfactory thermal and mechanical properties, accompanied by a green and facile approach, displayed the potential scalability of the NIPU films.

8.
Discov Nano ; 18(1): 148, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38047966

ABSTRACT

Tuning the electronic properties of transition metals using pyrophosphate (P2O7) ligand moieties can be a promising approach to improving the electrochemical performance of water electrolyzers and supercapacitors, although such a material's configuration is rarely exposed. Herein, we grow NiP2O7, CoP2O7, and FeP2O7 nanoparticles on conductive Ni-foam using a hydrothermal procedure. The results indicated that, among all the prepared samples, FeP2O7 exhibited outstanding oxygen evolution reaction and hydrogen evolution reaction with the least overpotential of 220 and 241 mV to draw a current density of 10 mA/cm2. Theoretical studies indicate that the optimal electronic coupling of the Fe site with pyrophosphate enhances the overall electronic properties of FeP2O7, thereby enhancing its electrochemical performance in water splitting. Further investigation of these materials found that NiP2O7 had the highest specific capacitance and remarkable cycle stability due to its high crystallinity as compared to FeP2O7, having a higher percentage composition of Ni on the Ni-foam, which allows more Ni to convert into its oxidation states and come back to its original oxidation state during supercapacitor testing. This work shows how to use pyrophosphate moieties to fabricate non-noble metal-based electrode materials to achieve good performance in electrocatalytic splitting water and supercapacitors.

9.
Sci Rep ; 13(1): 22179, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38092868

ABSTRACT

Eco-friendly and cost-effective catalysts with multiple active sites, large surface area, high stability and catalytic activity are highly desired for efficient water splitting as a sustainable green energy source. Within this line, a facile synthetic approach based on solventless thermolysis was employed for the simple and tunable synthesis of Ni1-xMgxFe2O4 (0 ≤ x ≤ 1) nanosheets. The characterization of nanosheets (via p-XRD, EDX, SEM, TEM, HRTEM, and SAED) revealed that the pristine ferrites (NiFe2O4 and MgFe2O4), and their solid solutions maintain the same cubic symmetry throughout the composition regulation. Elucidation of the electrochemical performance of the nanoferrite solid solutions showed that by tuning the local chemical environment of Ni in NiFe2O4 via Mg substitution, the intrinsic catalytic activity was enhanced. Evidently, the optimized Ni0.4Mg0.6Fe2O4 catalyst showed drastically enhanced HER activity with a much lower overpotential of 121 mV compared to the pristine NiFe2O4 catalyst. Moreover, Ni0.2Mg0.8Fe2O4 catalyst exhibited the best OER performance with a low overpotential of 284 mV at 10 mA/cm2 in 1 M KOH. This enhanced electrocatalytic activity could be due to improved electronic conductivity caused by the partial substitution of Ni2+ by Mg2+ in the NiFe2O4 matrix as well as the synergistic effect in the Mg-substituted NiFe2O4. Our results suggest a feasible route for developing earth-abundant metal oxide-based electrocatalysts for future water electrolysis applications.

10.
Discov Nano ; 18(1): 109, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37665422

ABSTRACT

Although porphyry systems like metallo-phthalocynine are recognized as promising molecular models for electrocatalytic oxygen reduction reaction (ORR), their poor durability and methanol tolerance are still challenges and need improvement before being considered for practical applications. Herein, we successfully designed and constructed a Fe-phthalocyanine-derived highly conjugated 2D covalent organic framework (2D FePc-COF), using octa-amino-Fe-phthalocyanine (OA-FePc) and cyclohexanone as precursors. The prepared 2D FePc-COF was characterized via multiple analytic techniques. The electrochemical studies indicated that prepared 2D FePc-COF was far more superior to OA-FePc and 20% Pt/C, displaying anodic shift of 100 and 50 mV (vs RHE) in formal potential, respectively. Moreover, this catalyst also demonstrated excellent methanol tolerance and durability (over 10,000 CV cycles). Theoretical investigations revealed that due to extended conjugation and elimination of electron donating groups (-NH2), the shifting of dz2-orbital (Fe) energy took nearer to π*-orbital (O2), allowing optimum coupling of both the orbitals, thereby enhancing 4e- ORR. This work demonstrates the art of molecular design, aiming at improving catalytic activity of macrocyclic molecular systems towards ORR.

11.
Chemosphere ; 339: 139713, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37549744

ABSTRACT

Wastewater treatment is critically important for the existence of life on earth; however, this approach involves the removal of toxic metal contaminants and organic pollutants, requiring efficient adsorbent materials. Within this agenda, metal-organic frameworks (MOFs) appear to be potential materials due to their unique properties as efficient adsorbents, effective photocatalysts, and reliable semi-permeable membranes. Therefore, MOFs have undergone various modifications over the years without desirable success to improve adsorption capacity, hydro-stability, reaction kinetics, and reusability. Therefore, scientists around the world got engaged in MOF research for novel modifications, including defect engineering, carbonization, and membrane fabrication, at the laboratory scale. This review focuses on developing MOF-based adsorbents, photocatalysts, and semi-permeable membranes for wastewater treatment since 2015, emphasizing their structural-functional relationships. Finally, the challenges and opportunities with MOFs in wastewater treatment are also underlined for future efforts.


Subject(s)
Environmental Pollutants , Metal-Organic Frameworks , Water Purification , Wastewater , Adsorption
12.
Discov Nano ; 18(1): 59, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37382728

ABSTRACT

The major center of attraction in renewable energy technology is the designing of an efficient material for both electrocatalytic and supercapacitor (SC) applications. Herein, we report the simple hydrothermal method to synthesize cobalt-iron-based nanocomposites followed by sulfurization and phosphorization. The crystallinity of nanocomposites has been confirmed using X-ray diffraction, where crystalline nature improves from as-prepared to sulfurized to phosphorized. The as-synthesized CoFe-nanocomposite requires 263 mV overpotential for oxygen evolution reaction (OER) to reach a current density of 10 mA/cm2 whereas the phosphorized requires 240 mV to reach 10 mA/cm2. The hydrogen evolution reaction (HER) for CoFe-nanocomposite exhibits 208 mV overpotential at 10 mA/cm2. Moreover, the results improved after phosphorization showing 186 mV to reach 10 mA/cm2. The specific capacitance (Csp) of as-synthesized nanocomposite is 120 F/g at 1 A/g, along with a power density of 3752 W/kg and a maximum energy density of 4.3 Wh/kg. Furthermore, the phosphorized nanocomposite shows the best performance by exhibiting 252 F/g at 1 A/g and the highest power and energy density of 4.2 kW/kg and 10.1 Wh/kg. This shows that the results get improved more than twice. The 97% capacitance retention after 5000 cycles shows cyclic stability of phosphorized CoFe. Our research thus offers cost-effective and highly efficient material for energy production and storage applications.

13.
Discov Nano ; 18(1): 84, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37382784

ABSTRACT

Bacterial transmission is considered one of the potential risks for communicable diseases, requiring promising antibiotics. Traditional drugs possess a limited spectrum of effectiveness, and their frequent administration reduces effectiveness and develops resistivity. In such a situation, we are left with the option of developing novel antibiotics with higher efficiency. In this regard, nanoparticles (NPs) may play a pivotal role in managing such medical situations due to their distinct physiochemical characteristics and impressive biocompatibility. Metallic NPs are found to possess extraordinary antibacterial effects that are useful in vitro as well as in vivo as self-modified therapeutic agents. Due to their wide range of antibacterial efficacy, they have potential therapeutic applications via diverse antibacterial routes. NPs not only restrict the development of bacterial resistance, but they also broaden the scope of antibacterial action without binding the bacterial cell directly to a particular receptor with promising effectiveness against both Gram-positive and Gram-negative microbes. This review aimed at exploring the most relevant types of metal NPs employed as antimicrobial agents, particularly those based on Mn, Fe, Co, Cu, and Zn metals, and their antimicrobial mechanisms. Further, the challenges and future prospects of NPs in biological applications are also discussed.

14.
Indian J Med Res ; 157(4): 330-344, 2023 04.
Article in English | MEDLINE | ID: mdl-37282396

ABSTRACT

Background & objectives: Gestational or preexisting diabetes is one of the risk factors of pre-eclampsia. Both are responsible for higher maternal and fetal complications. The objective was to study clinical risk factors of pre-eclampsia and biochemical markers in early pregnancy of women with diabetes mellitus (DM)/gestational diabetes mellitus (GDM) for the development of pre-eclampsia. Methods: The study group comprised pregnant women diagnosed with GDM before the 20 wk of gestation and DM before pregnancy and the control group had age-, parity- and period of gestation-matched healthy women. Sex hormone-binding globulin (SHBG), insulin-like growth factor-I (IGF-I) and 25-hydroxy vitamin D [25(OH)D] levels and the polymorphism of these genes was evaluated at recruitment. Results: Out of 2050 pregnant women, 316 (15.41%) women (296 had GDM and 20 DM before pregnancy) were included in the study group. Of these, 96 women (30.38%) in the study group and 44 (13.92%) controls developed pre-eclampsia. Multivariate logistic regression analysis indicated those who belonged to the upper middle and upper class of socio-economic status (SES) were likely to be at 4.50 and 6.10 times higher risk of developing pre-eclampsia. The risk of getting pre-eclampsia among those who had DM before pregnancy and pre-eclampsia in their previous pregnancy was about 2.34 and 4.56 times higher compared to those who had no such events, respectively. The serum biomarkers [SHBG, IGF-I and 25(OH)D] were not found to be useful in predicting pre-eclampsia in women with GDM. To predict risk of development of pre-eclampsia, the fitted risk model by backward elimination procedure was used to calculate a risk score for each patient. Receiver operating characteristic (ROC) curve for pre-eclampsia showed that area under the curve was 0.68 (95% confidence interval: 0.63-0.73); P<0.001. Interpretation & conclusions: The findings of this study suggested that pregnant women with diabetes were at a higher risk for pre-eclampsia. SES, history of pre-eclampsia in previous pregnancy and pre-GDM were found to be the risk factors.


Subject(s)
Diabetes, Gestational , Pre-Eclampsia , Pregnancy , Female , Humans , Male , Pre-Eclampsia/epidemiology , Pregnant Women , Insulin-Like Growth Factor I , Parity , Biomarkers
15.
ACS Appl Energy Mater ; 6(6): 3213-3224, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37013178

ABSTRACT

The microparticle quality and reproducibility of Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode materials are important for Li-ion battery performance but can be challenging to control directly from synthesis. Here, a scalable reproducible synthesis process is designed based on slug flow to rapidly generate uniform micron-size spherical-shape NCM oxalate precursor microparticles at 25-34 °C. The whole process takes only 10 min, from solution mixing to precursor microparticle generation, without needing aging that typically takes hours. These oxalate precursors are convertible to spherical-shape NCM811 oxide microparticles, through a preliminary design of low heating rates (e.g., 0.1 and 0.8 °C/min) for calcination and lithiation. The outcome oxide cathode particles also demonstrate improved tap density (e.g., 2.4 g mL-1 for NCM811) and good specific capacity (202 mAh g-1 at 0.1 C) in coin cells and reasonably good cycling performance with LiF coating.

16.
Discov Nano ; 18(1): 3, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36732431

ABSTRACT

A new, sizable family of 2D transition metal carbonitrides, carbides, and nitrides known as MXenes has attracted a lot of attention in recent years. This is because MXenes exhibit a variety of intriguing physical, chemical, mechanical, and electrochemical characteristics that are closely linked to the wide variety of their surface terminations and elemental compositions. Particularly, MXenes are readily converted into composites with materials including oxides, polymers, and CNTs, which makes it possible to modify their characteristics for a variety of uses. MXenes and MXene-based composites have demonstrated tremendous promise in environmental applications due to their excellent reducibility, conductivity, and biocompatibility, in addition to their well-known rise to prominence as electrode materials in the energy storage sector. The remarkable characteristics of 2D MXene, including high conductivity, high specific surface area, and enhanced hydrophilicity, account for the increasing prominence of its use in storage devices. In this review, we highlight the most recent developments in the use of MXenes and MXene-based composites for electrochemical energy storage while summarizing their synthesis and characteristics. Key attention is paid to applications in supercapacitors, batteries, and their flexible components. Future research challenges and perspectives are also described.

17.
Materials (Basel) ; 16(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36770145

ABSTRACT

MXene is becoming a "rising star" material due to its versatility for a wide portfolio of applications, including electrochemical energy storage devices, electrocatalysis, sensors, biomedical applications, membranes, flexible and wearable devices, etc. As these applications promote increased interest in MXene research, summarizing the latest findings on this family of materials will help inform the scientific community. In this review, we first discuss the rapid evolutionary change in MXenes from the first reported M2XTx structure to the last reported M5X4Tx structure. The use of systematically modified synthesis routes, such as foreign atom intercalation, tuning precursor chemistry, etc., will be further discussed in the next section. Then, we review the applications of MXenes and their composites/hybrids for rapidly growing applications such as batteries, supercapacitors, electrocatalysts, sensors, biomedical, electromagnetic interference shielding, membranes, and flexible and wearable devices. More importantly, we notice that its excellent metallic conductivity with its hydrophilic nature distinguishes MXene from other materials, and its properties and applications can be further modified by surface functionalization. MXene composites/hybrids outperform pristine MXenes in many applications. In addition, a summary of the latest findings using MXene-based materials to overcome application-specific drawbacks is provided in the last few sections. We hope that the information provided in this review will help integrate lab-scale findings into commercially viable products.

18.
F1000Res ; 12: 353, 2023.
Article in English | MEDLINE | ID: mdl-38618021

ABSTRACT

Background: Treatment of neuropathic pain is challenging. Pregabalin and duloxetine are used as first-line therapy. Various international guidelines recommend a combination of first-line agents for the management of neuropathic pain. The objective of this study was to evaluate the efficacy and safety of a fixed-dose combination (FDC) of low-dose pregabalin and duloxetine compared to pregabalin monotherapy at week 7 in patients with moderate to severe neuropathic pain. Methods: This was a phase 3, randomized, double-blind, double-dummy parallel-group non-inferiority study conducted at 17 sites across India. Three hundred and twenty-eight adult patients with moderate to severe neuropathic pain were randomized in a ratio of 1:1 to receive a FDC of pregabalin and duloxetine or pregabalin monotherapy for 7 weeks followed by a one-week follow-up. The pregabalin-duloxetine combination was initiated at 50 plus 20 mg per day and gradually titrated to a maximum of 75mg plus 30mg twice daily. Pregabalin was initiated at 75mg/day and gradually titrated to a maximum of 150mg twice daily. The main efficacy outcome was a mean change in pain intensity at the end of 7 weeks. Results: Two hundred and ninety-eight patients completed the study, 148 in the pregabalin-duloxetine group and 150 in the pregabalin group. The mean change in daily pain at 7 weeks was as follows: -4.49 with FDC and -4.66 with pregabalin (p<0.0001). The non-inferiority of a low-dose FDC compared to pregabalin monotherapy was demonstrated at the end of the study. The incidence of dizziness and somnolence was comparable between both treatments. A higher frequency of peripheral oedema was observed with pregabalin monotherapy than in the FDC group (p>0.05). Conclusions: A FDC of low doses of pregabalin and duloxetine and high dose of pregabalin monotherapy achieved similar analgesia with dizziness, and somnolence as the most frequent adverse event. Trial registration: CTRI/2020/09/027555.


Subject(s)
Dizziness , Neuralgia , Adult , Humans , Duloxetine Hydrochloride/adverse effects , Neuralgia/drug therapy , Pregabalin/adverse effects , Sleepiness , Double-Blind Method
19.
Nanomaterials (Basel) ; 12(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36500743

ABSTRACT

The green, sustainable, and inexpensive creation of novel materials, primarily nanoparticles, with effective energy-storing properties, is key to addressing both the rising demand for energy storage and the mounting environmental concerns throughout the world. Here, an orange peel extract is used to make cobalt oxide nanoparticles from cobalt nitrate hexahydrate. The orange peel extract has Citrus reticulata, which is a key biological component that acts as a ligand and a reducing agent during the formation of nanoparticles. Additionally, the same nanoparticles were also obtained from various precursors for phase and electrochemical behavior comparisons. The prepared Co-nanoparticles were also sulfurized and phosphorized to enhance the electrochemical properties. The synthesized samples were characterized using scanning electron microscopic and X-ray diffraction techniques. The cobalt oxide nanoparticle showed a specific capacitance of 90 F/g at 1 A/g, whereas the cobalt sulfide and phosphide samples delivered an improved specific capacitance of 98 F/g and 185 F/g at 1 A/g. The phosphide-based nanoparticles offer more than 85% capacitance retention after 5000 cycles. This study offers a green strategy to prepare nanostructured materials for energy applications.

20.
Polymers (Basel) ; 14(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36501676

ABSTRACT

Currently, polyurethane (PU) manufacturers seek green alternatives for sustainable production. In this work, sunflower oil is studied as a replacement and converted to a reactive form through epoxidation and oxirane opening to produce rigid PU foams. Confirmatory tests such as Fourier-transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), and hydroxyl value among others were performed to characterize the synthesized polyol. Despite the versatility of rigid PU foams, they are highly flammable, which makes eco-friendly flame retardants (FRs) desired. Herein, expandable graphite (EG) and dimethyl methyl phosphonate (DMMP), both non-halogenated FR, were incorporated under different concentrations to prepare rigid PU foams. Their effects on the physio-mechanical and fire-quenching properties of the sunflower oil-based PU foams were elucidated. Thermogravimetric and compression analysis showed that these foams presented appreciable compressive strength along with good thermal stability. The closed-cell contents (CCC) were around 90% for the EG-containing foams and suffered a decrease at higher concentrations of DMMP to 72%. The burning test showed a decrease in the foam's flammability as the neat foam had a burning time of 80 s whereas after the addition of 13.6 wt.% of EG and DMMP, separately, there was a decrease to 6 and 2 s, respectively. Hence, our research suggested that EG and DMMP could be a more viable alternative to halogen-based FR for PU foams. Additionally, the adoption of sunflower polyol yielded foams with results comparable to commercial ones.

SELECTION OF CITATIONS
SEARCH DETAIL
...