Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Signal Behav ; 17(1): 2146373, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36382615

ABSTRACT

Finger millet (ragi) is the main food grain for many people, especially in the arid and semiarid regions of developing countries in Asia and Africa. The grains contain an exceptionally higher amount of Ca (>300 mg/100 g) when compared to other major cereals. For sustainable production of ragi in the current scenario of climate change, this study aimed to evaluate the impact of Trichoderma harzianum (TRI) on ragi performance. The performance of photosynthetic pigment pool, photosynthetic apparatus, and root dynamics of three varieties of ragi (PRM-1, PRM-701, and PRM-801) in response to four treatments viz., C (soil), S+ TRI (soil + Trichoderma), farmyard manure (soil+ FYM), and FYM+TRI (Soil + FYM + Trichoderma) were studied. Results have shown a significant increase in the photosynthetic pigment pool and optimized functional and structural integrity of the photosynthetic apparatus in response to the combination of farmyard manure (FYM) with TRI. Higher yield parameters viz., φ(Po) and φ(Eo), δ(Ro), efficiency ψ(Eo), performance indices - PIabs and PItotal, and enhanced root canopy and biomass were observed in all three varieties. Improved electron transport from PSII to PSI, root canopy and biomass, may also suitably favor biological carbon sequestration to retain soil health and plant productivity in case grown in association with FYM and TRI.


Subject(s)
Eleusine , Trichoderma , Manure , Electron Transport , Soil/chemistry , Edible Grain
2.
Plant Signal Behav ; 16(3): 1865687, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33356839

ABSTRACT

Noni (Morindacitrifolia L.), a tropical, medicinal plant of the family Rubiaceae utilized since 2000 y ago by the Polynesians, is currently facing a major challenge in production vis-a-vis climate change. The worldwide average temperatures continue to fluctuate, resulting in extremely cold winters and hot summers that reduce plant productivity. Photosynthetic apparatus is an exceptionally sensitive component to estimate the degree of damage at contrasting temperatures. The present study was aimed to evaluate the temperature stress response of Noni plant using the chlorophyll a fluorescence OJIP transients (OJIP transients). Results showed the declined photosynthetic pigment pool and reduced functional and structural integrity of the photosynthetic apparatus under very low- and high-temperature treatments. Drastically lower yield parameters such as φ(Po) and φ(Eo), efficiency ψ(Eo) and performance indices - PIabs and PItotal, and accumulation of inactive reaction centers were observed. Consecutively, a lower level of calculated electron transport from PSII to PSI was observed. In contrast, the enhanced δRo indicates that PSI is more thermo-tolerant as compared to PSII. Additionally, very low and high temperatures cause an increase in antenna size (ABS/RC) and the decrease in the amplitude of I to P phase of fluorescence transient. Overall, the photosynthetic apparatus of leaf tissue was more sensitive to low and high temperatures than the developing fruit. The findings of the present study demonstrated the potential role of thylakoid components of the photosynthetic apparatus, which might be crucial in regulating the temperature stress response in the Noni plant, and thereby crop improvement.


Subject(s)
Acclimatization/physiology , Morinda/physiology , Photosynthesis/physiology , Stress, Physiological , Temperature , Electron Transport , Fluorescence , Models, Biological , Pigments, Biological/metabolism
3.
Plant Signal Behav ; 15(12): 1824721, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32970515

ABSTRACT

The oxygen-evolving complex is integrated into photosystem (PSII). An essential part of oxygenic photosynthetic apparatus, embedded in the thylakoid membrane of chloroplasts. The OEC is a super catalyst to split water into molecular oxygen in the presence of light. The OEC consist of four Mn atoms, one Ca atom and five oxygen atoms (CaMn4O5) and this cluster is maintained by its surrounding proteins viz., PsbQ, PsbP, PsbO, PsbR. The function of this super catalyst with a high turnover frequency of 500 s-1 in standard condition. Chlorophyll a fluorescence (OJIP transients) are used to understand structural and functional cohesion of photosynthetic apparatus. A further K-peak in OJIP curve reflects damage at the OEC donor site in response to salinity, drought, and high temperature. The decline in performance indices (PI, SFI) also revealed structural damage of photosynthetic apparatus that leads to disruption of electron transport rate under abiotic conditions. This review discusses the structural and function cohesion of the OEC in plant against variable abiotic conditions.


Subject(s)
Oxygen/metabolism , Stress, Physiological/physiology , Catalysis , Chlorophyll A/metabolism , Photosystem II Protein Complex/metabolism , Thylakoids/metabolism
4.
Plant Signal Behav ; 14(6): 1601952, 2019.
Article in English | MEDLINE | ID: mdl-30977694

ABSTRACT

Nutritional rich pigeonpea (Cajanus cajan [L.]), a perennial shrub member of family Fabaceae is the sixth most important grain legume of the world. Continuous rise of temperature and current global climate scenario limits plant growth and performance but photosynthetic machineries are adversely affected. The aim of this study was the analysis of tissue specific photosynthetic pigments and photosynthetic electron transport rate under elevated temperature. Two different stages of both leaf (young and mature), and pod (young and mature) were chosen, and photosynthetic pigment and J-I-P tests were measured. Leaves and pods were detached and incubated in normal temperature (25°C) for 24 h in two different condition one light irradiance (100 µmol m-2 s-1) and another darkness as control, and treated with high temperature 45°C for 24 h and repeated previous measurements were taken. Tissue specific photosynthetic pigments variation were observed; J-I-P parameters clearly revealed that elevated temperature has greater influence on photosystem II (PSII) electron transport than photosystem I (PSI), and significant changes were observed in pods than leaves. Young tissues were adversely affected by elevated temperature. In addition, the J-I-P tests and energy pipeline model indicated that PSI electron transport rate of leaves and pods appeared to be more thermo-tolerance than those in PSII. Only a minor drop in pigments pool and photosynthetic performance was observed after 24 h of darkness. O-J-I-P transients can be used as a sensitive, nondestructive method for measuring heat stress damage and a special tool for investigating action sites of high temperature stress. Findings of this study will contribute to basic understanding of photosynthetic performance, and to screen potential thermo-tolerant genotypes of pigeonpea to sustain in either current scenario of climate change or/and erratic future climatic conditions.


Subject(s)
Cajanus/physiology , Organ Specificity , Photosynthesis , Temperature , Chlorophyll A/metabolism , Electron Transport , Fluorescence , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Quantum Theory
5.
Int J Biometeorol ; 63(2): 143-152, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30603985

ABSTRACT

Field experiments were conducted for 2 years to examine the response of stigma in two different pollination systems, viz., CMS line (MJA5) and open-pollinated variety (Pusa Bold) of Indian mustard (Brassica juncea), to varying weather conditions created by different sowing dates. The CMS line MJA5 (female) with its male line in 8:2 (A:R) row ratio, and Pusa Bold in an isolated field were sown on 21st of October, 30th of October, and 18th of November in 2 consecutive years in North Indian condition. Temporal differences in sowing provided differed weather conditions during flowering, which resulted in variations in the duration to attain the peak flowering stage. Stigma was receptive for longer duration (8 days from the day of anthesis) in CMS line which needs an external pollen source for fertilization to happen, whereas it was only 4 days in open-pollinated variety, assessed in terms of siliqua set and number of seeds/siliqua. Substantial effect of sowing date on stigma receptivity was observed; it was longer in plants sown during October in comparison to those of November in both years. The energy requirement parameters, viz., growing degree days and photo-thermal unit, confirmed that plants sown later failed to accumulate sufficient energy for satisfactory phenological growth and for good seed development.


Subject(s)
Flowers/physiology , Mustard Plant/physiology , Pollination , Seasons , Temperature
6.
Commun Integr Biol ; 8(5): e1042630, 2015.
Article in English | MEDLINE | ID: mdl-27066163

ABSTRACT

Stigmatic receptivity restricts the successful pollination in cereal crops. The present study deals with the biochemical test for enzymes producing in stigma of field crops such as Indian mustard, rice and wheat. The alcohol dehydrogenase and hydrogen peroxide assays revealed stigmatic receptivity as a violet color and oxygen bubbles released by the chemical reaction. Therefore, the 2 quick tests are in conformity to each other and supported the seed set data, which was utmost at blooming stage of flower ranged between 2-4 d All the 3 crops showed variation in stigmatic receptivity with respect to different time periods of blooming stages and hence, it may affects simultaneous pollen germination and tube growth, fertilization and seed set. The present finding suggests that the growth of pollen tube and stigma receptivity could be influenced by specific enzymes on stigma surface after 2-4 d of blooming stage, which contributes to proper seed set.

7.
Plant Signal Behav ; 8(9)2013 Sep.
Article in English | MEDLINE | ID: mdl-23857350

ABSTRACT

Gibberellic acid (GA), a plant hormone stimulating plant growth and development, is a tetracyclic di-terpenoid compound. GAs stimulate seed germination, trigger transitions from meristem to shoot growth, juvenile to adult leaf stage, vegetative to flowering, determines sex expression and grain development along with an interaction of different environmental factors viz., light, temperature and water. The major site of bioactive GA is stamens that influence male flower production and pedicel growth. However, this opens up the question of how female flowers regulate growth and development, since regulatory mechanisms/organs other than those in male flowers are mandatory. Although GAs are thought to act occasionally like paracrine signals do, it is still a mystery to understand the GA biosynthesis and its movement. It has not yet confirmed the appropriate site of bioactive GA in plants or which tissues targeted by bioactive GAs to initiate their action. Presently, it is a great challenge for scientific community to understand the appropriate mechanism of GA movement in plant's growth, floral development, sex expression, grain development and seed germination. The appropriate elucidation of GA transport mechanism is essential for the survival of plant species and successful crop production.


Subject(s)
Gibberellins/metabolism , Plants/metabolism , Flowers/physiology , Gibberellins/biosynthesis , Gibberellins/history , History, 20th Century , Meristem/metabolism , Plant Dormancy , Plants/embryology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...