Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38393581

ABSTRACT

Chitinases, a glycosyl hydrolase family 18 members, have a wide distribution in both prokaryotes and eukaryotes, including humans. Regardless of the absence of endogenous chitin polymer, various chitinases and chitinase-like proteins (CLPs) have been reported in mammals. However, several other carbohydrate polymers, such as hyaluronic acid and heparan sulfate, show structural similarities with chitin, which could be a potential target of chitinase and CLPs. Heparan sulfate is part of the integral membrane proteins and involves in cell adherence and migration. Hence, to demonstrate the effect of chitinase on cancer cell progression, we selected two chitinases from Serratia marcescens, ChiB and ChiC, which function as exo- and endo-chitinase, respectively. The ChiB and ChiC proteins were produced recombinantly by cloning chiB and chiC genes from Serratia marcescens. The cell viability of the Michigan Cancer Foundation-7 (MCF-7) cells was studied using different concentrations of the purified recombinant proteins. Cell viability assay was performed using 3-(4, 5-dimethyl thiazolyl-2)-2, 5-diphenyltetrazolium bromide and water-soluble tetrazolium salt, and the effect of ChiB and ChiC on cell proliferation was studied by clonogenic assay. The cell migration study was analysed by wound healing, transwell migration, and invasion assays. Cell cycle analysis of propidium iodide-stained cells and cell proliferation markers such as pERK1/2, pAKT, and SMP30 were also done. It was observed that both ChiB and ChiC were able to impede cell viability, cell migration, and invasion significantly. These observations and our in silico molecular docking analysis suggest that ChiC is a potential anticancer agent and is more efficient than ChiB. Since the ChiC is able to inhibit both cancer cell proliferation and migration, it could be a potential candidate for the treatment of metastatic cancer.

2.
World J Microbiol Biotechnol ; 40(2): 45, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38114754

ABSTRACT

Human senescence marker protein 30 (huSMP30) has been characterized as a multifaceted protein consisting of various enzymatic and cellular functions. It catalyzes the interconversion of L-gulonate and L-gulono-γ-lactone in the ascorbate biosynthesis pathway. Therefore, we hypothesized that it could be a potential anti-biofilm agent against pathogenic bacteria due to its lactonase activity. In order to corroborate this, the huSMP30 was recombinantly expressed, purified, and analyzed for its ability to inhibit Mycobacterium smegmatis biofilm formation, which showed a concentration-dependent inhibition as compared to the untreated control group. Further, in silico analysis was performed to redesign the huSMP30 with enhanced lactonase activity. Molecular docking analysis of the huSMP30 and lactone substrates facilitated the selection of three single amino acid substitutions (E18H, N154Q, and D204V), which were created using a PCR-based site-directed mutagenesis reaction. These mutant proteins and the wild-type huSMP30 were purified, and the effects on the enzymatic activity and biofilm formation were studied. The mutants E18H and D204V showed non-significant effects on specific lactonase activity, catalytic efficiency, and anti-biofilm property; however, the mutant N154Q showed significant improvement in the specific lactonase activity, catalytic efficiency, and inhibition in the biofilm formation. The protein stability analysis revealed that the wild-type huSMP30 and its designed mutants were stable at 37 °C for up to 4 days. In conclusion, the anti-biofilm property of the huSMP30 has been established, and an engineered version, N154Q, inhibits biofilm formation with greater efficiency. Human SMP30 is a versatile protein with multiple cellular and enzymatic functions, however, its anti-biofilm potential has not been explored. Our work presents the method to produce soluble and active huSMP30 in the E. coli expression system and establishes its role as an anti-biofilm agent against Mycobacterium smegmatis owing to its lactonase activity. Our results provide support for the future advancement of huSMP30 as a potential anti-biofilm agent targeting pathogenic Mycobacterium species.


Subject(s)
Escherichia coli , Mycobacterium smegmatis , Humans , Biofilms , Escherichia coli/genetics , Escherichia coli/metabolism , Lactones/metabolism , Molecular Docking Simulation , Mycobacterium smegmatis/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/therapeutic use , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/therapeutic use
3.
Front Immunol ; 14: 1200195, 2023.
Article in English | MEDLINE | ID: mdl-37334355

ABSTRACT

Dengue is the most common viral infection spread by mosquitoes, prevalent in tropical countries. The acute dengue virus (DENV) infection is a benign and primarily febrile illness. However, secondary infection with alternative serotypes can worsen the condition, leading to severe and potentially fatal dengue. The antibody raised by the vaccine or the primary infections are frequently cross-reactive; however, weakly neutralizing, and during subsequent infection, they may increase the odds of antibody-dependent enhancement (ADE). Despite that, many neutralizing antibodies have been identified against the DENV, which are thought to be useful in reducing dengue severity. Indeed, an antibody must be free from ADE for therapeutic application, as it is pretty common in dengue infection and escalates disease severity. Therefore, this review has described the critical characteristics of DENV and the potential immune targets in general. The primary emphasis is given to the envelope protein of DENV, where potential epitopes targeted for generating serotype-specific and cross-reactive antibodies have critically been described. In addition, a novel class of highly neutralizing antibodies targeted to the quaternary structure, similar to viral particles, has also been described. Lastly, we have discussed different aspects of the pathogenesis and ADE, which would provide significant insights into developing safe and effective antibody therapeutics and equivalent protein subunit vaccines.


Subject(s)
Dengue Virus , Dengue , Animals , Antibodies, Viral , Antibody-Dependent Enhancement , Antibodies, Neutralizing
4.
Prep Biochem Biotechnol ; 53(5): 465-474, 2023.
Article in English | MEDLINE | ID: mdl-35856452

ABSTRACT

Paraoxonase 2 (PON2) is considered as a potential anti-biofilm agent due to the highest lactonase activity among the PON family members implicating quorum quenching in gram-negative bacteria. However, PON2 is expressed mostly in insoluble fractions in the bacterial expression host which limits its application as an anti-biofilm agent. Therefore, obtaining the native human PON2 (HuPON2) protein in soluble form, better protein yield, stability, and enzymatic activities is essential. In this study, procedures for obtaining a high yield of the native form of HuPON2 in soluble and active forms were optimized. Guanidinium hydrochloride solubilized the HuPON2 protein, however, it is lethal for several bacteria, and thus a major problem for studying the various downstream application of the protein. Therefore, another refolding process for native HuPON2 was optimized. Owing to the promiscuous nature of HuPON2, we hypothesized that it could inhibit the biofilm formation in Mycobacterium smegmatis also. Interestingly, we observed a significant inhibition of the biofilm formation by HuPON2_Rf. However, the primary target of HuPON2 and the probable mechanism behind the quorum quenching in M. smegmatis need to be further explored, which would help widen the scope of HuPON2 as a potential anti-biofilm agent beyond the gram-negative bacteria.


Subject(s)
Aryldialkylphosphatase , Biofilms , Humans , Aryldialkylphosphatase/metabolism , Quorum Sensing
5.
Neurotoxicology ; 93: 60-70, 2022 12.
Article in English | MEDLINE | ID: mdl-36058312

ABSTRACT

Organophosphate (OP) compounds are frequently linked to both chronic and acute forms of nervous system disorders. Chlorpyrifos (CPF) and parathion (PA) are two of the most widely used OP insecticides throughout the world. These compounds are acetylcholinesterase inhibitors and cause a cholinergic crisis. However, there are other non-cholinergic effects of the OP compounds as well. The role of Paraoxonase 1 (PON1) in the metabolism of OP compounds is well established owing to its significant organophosphatase activity. Since PON2 has no paraoxonase activity and the level of its expression is 20-40 fold higher in the brain, in this article the role of PON2 in response to CPF and PA exposure concerning both cholinergic and non-cholinergic effects are explored. The effect of these OPs on cell viability, reactive oxygen species (ROS), PON2 gene expression, and function was studied. Glutathione level, esterase activity, and paraoxonase activity were also measured in CPF- and PA-treated IMR-32 cells. At these levels, both CPF and PA showed different impacts on IMR-32 cells. PA at higher concentrations (50-200 µM) proved to be less toxic than CPF. Interestingly, induction of ROS was also lower in the case of PA-treated cells as compared to the CPF. However, PON2 protein expression was increased with the increasing concentration of PA and decreased with the increasing concentration of CPF. To explore the possible mechanism of the differential regulation of PON2 gene expression by CPF and PA, we investigated the possible binding and signaling through the human M2 muscarinic acetylcholine receptor (M2AChR). Since M2AChRs are similar to G-protein coupled receptors and function through cAMP signalling, we measured the cAMP level after CPF and PA treatment. CPF- and PA-treated IMR-32 cells can be used as a model to study the mechanism by which PON2 acts as a ROS scavenger in response to xenobiotics stimulation in the brain.


Subject(s)
Chlorpyrifos , Insecticides , Neuroblastoma , Parathion , Humans , Chlorpyrifos/toxicity , Parathion/toxicity , Aryldialkylphosphatase/metabolism , Acetylcholinesterase/metabolism , Reactive Oxygen Species/metabolism , Insecticides/toxicity , Oxidative Stress
6.
J Biol Chem ; 298(4): 101772, 2022 04.
Article in English | MEDLINE | ID: mdl-35218775

ABSTRACT

Dengue is one of the most dominant arthropod-borne viral diseases, infecting at least 390 million people every year throughout the world. Despite this, there is no effective treatment against dengue, and the only available vaccine has already been withdrawn owing to the significant adverse effects. Therefore, passive immunotherapy using monoclonal antibodies is now being sought as a therapeutic option. To date, many dengue monoclonal antibodies have been identified, most of which are serotype-specific, and only a few of which are cross-reactive. Furthermore, antibodies that cross-react within serotypes are weakly neutralizing and frequently induce antibody-dependent enhancement, which promotes viral entry and replication. Therefore, broadly neutralizing antibodies with no risk of antibody-dependent enhancement are required for the treatment of dengue. Here, we developed a single-chain variable fragment (scFv) antibody from an anti-fusion loop E53 antibody (PDB: 2IGF). We introduced previously predicted favorable complementarity-determining region (CDR) mutations into the gene encoding the scFv antibody for affinity maturation, and the resultant variants were tested in vitro against the highly conserved fusion and bc epitope of the dengue virus envelope protein. We show some of these scFv variants with two to three substitution mutations in three different CDRs possess affinity constants (KD) ranging from 20 to 200 nM. The scFv-mutant15, containing D31L, Y105W, and S227W substitutions, showed the lowest affinity constant, (KD = 24 ± 7 nM), approximately 100-fold lower than its parental construct. We propose that the scFv-derivative antibody may be a good candidate for the development of an effective and safe immunotherapy.


Subject(s)
Antibodies, Viral , Dengue Virus , Dengue , Epitopes , Single-Chain Antibodies , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Dengue/therapy , Dengue Virus/immunology , Epitopes/immunology , Humans , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/therapeutic use , Viral Envelope Proteins/immunology
7.
J Biosci ; 472022.
Article in English | MEDLINE | ID: mdl-35092416

ABSTRACT

Paraoxonase 2 (PON2) is a ubiquitously expressed intracellular enzyme that is known to have a protective role from oxidative stress. Clinical studies have also demonstrated the significance of PON2 in the manifestation of cardiovascular and several other diseases, and hence, it is considered an important biomarker. Recent findings of its expression in brain tissue suggest its potential protective effect on oxidative stress and neuroinflammation. Polymorphisms of PON2 in humans are a risk factor in many pathological conditions, suggesting a possible mechanism of its anti-oxidative property probably through lactonase activity. However, exogenous factors may also modulate the expression and activity of PON2. Hence, this review aims to report the mechanism by which PON2 expression is regulated and its role in oxidative stress disorders such as neurodegeneration and tumor formation. The role of PON2 owing to its lactonase activity in bacterial infectious diseases and association of PON2 polymorphism with pathological conditions are also highlighted.


Subject(s)
Aryldialkylphosphatase/physiology , Cardiovascular Diseases/physiopathology , Infections/physiopathology , Neoplasms/physiopathology , Neurodegenerative Diseases/physiopathology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cardiovascular Diseases/etiology , Gene Expression Regulation/drug effects , Hormones/metabolism , Humans , Infections/etiology , Neoplasms/etiology , Neurodegenerative Diseases/etiology , Polymorphism, Genetic , Protein Processing, Post-Translational , Transcription Factors/genetics , Transcription Factors/metabolism
8.
PLoS One ; 16(10): e0258879, 2021.
Article in English | MEDLINE | ID: mdl-34714861

ABSTRACT

Serum Paraoxonase 2 (PON2) level is a potential biomarker owing to its association with a number of pathophysiological conditions such as atherosclerosis and cardiovascular disease. Since cholinergic deficiency is closely linked with Alzheimer's disease (AD) progression, acetylcholinesterase inhibitors (AChEIs) are the treatment of choice for patients with AD. However, there is a heterogenous response to these drugs and mostly the subjects do not respond to the treatment. Gene polymorphism, the simultaneous occurrence of two or more discontinuous alleles in a population, could be one of the important factors for this. Hence, we hypothesized that PON2 and its polymorphic forms may be hydrolyzing the AChEIs differently, and thus, different patients respond differently. To investigate this, two AChEIs, donepezil hydrochloride (DHC) and pyridostigmine bromide (PB), were selected. Human PON2 wildtype gene and four mutants, two catalytic sites, and two polymorphic sites were cloned, recombinantly expressed, and purified for in vitro analysis. Enzyme activity and AChE activity were measured to quantitate the amount of DHC and PB hydrolyzed by the wildtype and the mutant proteins. Herein, PON2 esterase activity and AChE inhibitor efficiency were found to be inversely related. A significant difference in enzyme activity of the catalytic site mutants was observed as compared to the wildtype, and subsequent AChE activity showed that esterase activity of PON2 is responsible for the hydrolysis of DHC and PB. Interestingly, PON2 polymorphic site mutants showed increased esterase activity; therefore, this could be the reason for the ineffectiveness of the drugs. Thus, our data suggested that the esterase activity of PON2 was mainly responsible for the hydrolysis of AChEI, DHC, and PB, and that might be responsible for the variation in individual response to AChEI therapy.


Subject(s)
Alzheimer Disease , Aryldialkylphosphatase , Cholinesterase Inhibitors/metabolism , Donepezil/metabolism , Pyridostigmine Bromide/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Aryldialkylphosphatase/genetics , Aryldialkylphosphatase/metabolism , Humans , Mutation , Protein Binding
9.
J Biosci ; 462021.
Article in English | MEDLINE | ID: mdl-34987135

ABSTRACT

Paraoxonase 2 (PON2) is a ubiquitously expressed intracellular enzyme that is known to have a protective role from oxidative stress. Clinical studies have also demonstrated the significance of PON2 in the manifestation of cardiovascular and several other diseases, and hence, it is considered an important biomarker. Recent findings of its expression in brain tissue suggest its potential protective effect on oxidative stress and neuroinflammation. Polymorphisms of PON2 in humans are a risk factor in many pathological conditions, suggesting a possible mechanism of its anti-oxidative property probably through lactonase activity. However, exogenous factors may also modulate the expression and activity of PON2. Hence, this review aims to report the mechanism by which PON2 expression is regulated and its role in oxidative stress disorders such as neurodegeneration and tumor formation. The role of PON2 owing to its lactonase activity in bacterial infectious diseases and association of PON2 polymorphism with pathological conditions are also highlighted.


Subject(s)
Aryldialkylphosphatase , Neoplasms , Aryldialkylphosphatase/genetics , Aryldialkylphosphatase/metabolism , Brain/metabolism , Humans , Neoplasms/metabolism , Oxidative Stress/genetics , Polymorphism, Genetic
10.
J Toxicol ; 2020: 3007984, 2020.
Article in English | MEDLINE | ID: mdl-33029136

ABSTRACT

Organophosphorus compounds are extensively used worldwide as pesticides which cause great hazards to human health. Nerve agents, a subcategory of the organophosphorus compounds, have been produced and used during wars, and they have also been used in terrorist activities. These compounds possess physiological threats by interacting and inhibiting acetylcholinesterase enzyme which leads to the cholinergic crisis. After a general introduction, this review elucidates the mechanisms underlying cholinergic and noncholinergic effects of organophosphorus compounds. The conceivable treatment strategies for organophosphate poisoning are different types of bioscavengers which include stoichiometric, catalytic, and pseudocatalytic. The current research on the promising treatments specifically the catalytic bioscavengers including several wild-type organophosphate hydrolases such as paraoxonase and phosphotriesterase, phosphotriesterase-like lactonase, methyl parathion hydrolase, organophosphate acid anhydrolase, diisopropyl fluorophosphatase, human triphosphate nucleotidohydrolase, and senescence marker protein has been widely discussed. Organophosphorus compounds are reported to be the nonphysiological substrate for many mammalian organophosphate hydrolysing enzymes; therefore, the efficiency of these enzymes toward these compounds is inadequate. Hence, studies have been conducted to create mutants with an enhanced rate of hydrolysis and high specificity. Several mutants have been created by applying directed molecular evolution and/or targeted mutagenesis, and catalytic efficiency has been characterized. Generally, organophosphorus compounds are chiral in nature. The development of mutant enzymes for providing superior stereoselective degradation of toxic organophosphorus compounds has also been widely accounted for in this review. Existing enzymes have shown limited efficiency; hence, more effective treatment strategies have also been critically analyzed.

11.
Res Vet Sci ; 131: 15-20, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32278959

ABSTRACT

Ascorbic acid (AA) is known to be an important antioxidant serving as a cofactor in collagen synthesis, and thus facilitates follicular growth in the ovary. Many studies have shown that AA is synthesized in the liver and transported to other organs including ovary, however, there is no direct evidence of ascorbic acid synthesis in the ovary. Hence, we examined the expression pattern of different proteins (SMP30/GNL and GULO) involved in the AA synthesis in pre-pubertal rat, which showed significant expression of these proteins, suggesting the synthesis of AA in the ovary. Accumulation of AA in the ovary during follicular growth has been well demonstrated. However, the effect of Pregnant Mare Serum Gonadotropin (PMSG) on the AA synthesis in the ovary has not been studied in detail. Hence to decipher the effect, different doses of PMSG were injected subcutaneously into the pre-pubertal female rats, and ovarian AA level was measured after 48 h. A significant increase in AA content was observed in PMSG treated animal groups. Further, to understand the mechanism underlying ovarian AA accumulation, the expression levels of SMP30/GNL and GULO genes were measured. Expression of both the genes was significantly suppressed, which suggested a lowered AA synthesis in the PMSG treated rat ovary. For further understanding, mRNA expression of AA transporters SVCT1 and SVCT2 encoded by SLC23A1 and SLC23A2 genes respectively were measured, which showed increased level of SVCT1 expression. These observations suggested that the increased AA content might not be due to increased synthesis of AA within the ovary but possibly due to increased uptake from blood during the stimulation of follicular growth.


Subject(s)
Ascorbic Acid/biosynthesis , Gonadotropins, Equine/pharmacology , Ovary/drug effects , Sexual Maturation/physiology , Animals , Antioxidants/metabolism , Biological Transport , Carbohydrate Metabolism , Female , Liver/metabolism , Pregnancy , Rats
12.
Appl Microbiol Biotechnol ; 104(10): 4333-4344, 2020 May.
Article in English | MEDLINE | ID: mdl-32232529

ABSTRACT

Dengue virus (DENV) is a vector-borne human pathogen that usually causes dengue fever; however, sometime it leads to deadly complications such as dengue with warning signs (DWS+) and severe dengue (SD). Several studies have shown that fusion (Fu) and bc loop of DENV envelope domain II are highly conserved and consist some of the most dominant antigenic epitopes. Therefore, in this study, Fu and bc loops were joined together to develop a short recombinant protein as an alternative of whole DENV envelope protein, and its immunogenic potential as fusion peptide was estimated. For de novo designing of the antigen, Fu and bc peptides were linked with an optimised linker so that the three dimensional conformation was maintained as it is in DENV envelope protein. The redesigned Fubc protein was expressed in E. coli and purified. Subsequently, structural integrity of the purified protein was verified by CD spectroscopy. To characterise immune responses against recombinant Fubc protein, BALB/c mice were subcutaneously injected with emulsified antigen preparation. It was observed by ELISA that Fubc fusion protein elicited higher serum IgG antibody response either in the presence or in absence of Freund's adjuvant in comparison to the immune response of Fu and bc peptides separately. Furthermore, the binding of Fubc protein with mice antisera was validated by SPR analysis. These results suggest that Fu and bc epitope-based recombinant fusion protein could be a potential candidate towards the development of the effective subunit vaccine against DENV.


Subject(s)
Antibodies, Viral/blood , Dengue Vaccines/immunology , Immunogenicity, Vaccine , Recombinant Fusion Proteins/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Dengue/prevention & control , Dengue Vaccines/administration & dosage , Dengue Virus/immunology , Epitopes/genetics , Epitopes/immunology , Female , Male , Mice , Mice, Inbred BALB C , Recombinant Fusion Proteins/administration & dosage , Viral Envelope Proteins/genetics
13.
PLoS One ; 14(6): e0218629, 2019.
Article in English | MEDLINE | ID: mdl-31220150

ABSTRACT

Senescence Marker Protein (SMP30) is a metalloenzyme that shows lactonase activity in the ascorbic acid (AA) biosynthesis pathway in non-primate mammals such as a mouse. However, AA biosynthesis does not occur in the primates including humans. Several studies have shown the role of SMP30 in maintaining calcium homeostasis in mammals. In addition, it is also reported to have promiscuous enzyme activity with an organophosphate (OP) substrate. Hence, this study aims to recombinantly express and purify the SMP30 proteins from both mouse and human, and to study their structural alterations and functional deviations in the presence of different divalent metals. For this, mouse SMP30 (MoSMP30) as well as human SMP30 (HuSMP30) were cloned in the bacterial expression vector. Proteins were overexpressed and purified from soluble fractions as well as from inclusion bodies as these proteins were expressed largely in insoluble fractions. The purified proteins were used to study the folding conformations in the presence of different divalent cations (Ca2+, Co2+, Mg2+, and Zn2+) with the help of circular dichroism (CD) spectroscopy. It was observed that both MoSMP30 and HuSMP30 acquired native folding conformations. To study the metal-binding affinity, dissociation constant (Kd values) were calculated from UV-VIS titration curve, which showed the highest affinity of MoSMP30 with Zn2+. However, HuSMP30 showed the highest affinity with Ca2+, suggesting the importance of HuSMP30 in maintaining calcium homeostasis. Enzyme kinetics were performed with γ-Thiobutyrolactone and Demeton-S in the presence of different divalent cations. Interestingly, both the proteins showed lactonase activity in the presence of Ca2+. In addition, MoSMP30 and HuSMP30 also showed lactonase activity in the presence of Co2+ and Zn2+ respectively. Moreover, both the proteins showed OP hydrolase activities in the presence of Ca2+ as well as Zn2+, suggesting the metal-dependent promiscuous nature of SMP30.


Subject(s)
Calcium-Binding Proteins/chemistry , Cations, Divalent/chemistry , Intracellular Signaling Peptides and Proteins/chemistry , Molecular Dynamics Simulation , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/chemistry , 4-Butyrolactone/metabolism , Animals , Binding Sites , Calcium-Binding Proteins/metabolism , Cations, Divalent/metabolism , Disulfoton/chemistry , Disulfoton/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Kinetics , Mice , Mice, Inbred BALB C , Protein Binding , Sequence Homology, Amino Acid
14.
Microb Cell Fact ; 18(1): 5, 2019 Jan 14.
Article in English | MEDLINE | ID: mdl-30642336

ABSTRACT

BACKGROUND: The production of therapeutically active single chain variable fragment (scFv) antibody is still challenging in E. coli due to the aggregation propensity of recombinant protein into inclusion bodies (IBs). However, recent advancement of biotechnology has shown substantial recovery of bioactive protein from such insoluble IBs by solubilization and refolding processes. In addition, gene fusion technology has also widely been used to improve the soluble protein production using E. coli. This study demonstrates that mild-solubilization and in vitro refolding strategies, both are capable to recover soluble scFv protein from bacterial IBs, although the degree of success is greatly influenced by different fusion tags with the target protein. RESULTS: It was observed that the most commonly used fusion tag, i.e., maltose binding protein (MBP) was not only influenced the cytoplasmic expression in E. coli but also greatly improved the in vitro refolding yield of scFv protein. On the other hand, mild solubilization process potentially could recover soluble and functional scFv protein from non-classical IBs without assistance of any fusion tag and in vitro refolding step. The recovery yield achieved by mild solubilization process was also found higher than denaturation-refolding method except while scFv was refolded in fusion with MBP tag. Concomitantly, it was also observed that the soluble protein achieved by mild solubilization process was better structured and functionally more active than the one achieved by in vitro refolding method in the absence of MBP tag or refolding enhancer. CONCLUSIONS: Maltose binding protein tagged scFv has shown better refolding and solubility yields as compare to mild solubilization process. However, in terms of cost, time and tag free nature, mild solubilization method for scFv recovery from bacterial IBs is considerable for therapeutic application and further structural studies.


Subject(s)
Escherichia coli/metabolism , Single-Chain Antibodies/metabolism , Antigen-Antibody Reactions , Circular Dichroism , Inclusion Bodies/metabolism , Maltose-Binding Proteins/genetics , Protein Denaturation , Protein Refolding , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Solubility
15.
PLoS One ; 14(1): e0209576, 2019.
Article in English | MEDLINE | ID: mdl-30629625

ABSTRACT

Dengue being one of the deadliest diseases of tropical regions, enforces to put continuous efforts for the development of vaccine and effective therapeutics. Most of the antibodies generated during dengue infection are non-neutralizing and cause antibody dependent enhancement. Hence, making a potent neutralizing antibody against all four dengue serotypes could be very effective for the treatment. However, designing a single antibody for all serotypes is difficult due to variation in protein sequences. Therefore, the objective is to identify conserved region of dengue envelope protein and then develop an antibody against that conserved region. Before advancing to the development of such an antibody, it is desirable to validate the interactions between antibody and dengue envelope protein. In silico analysis of such interactions provides a good platform to find out a suitable region to design and construct an antibody against it by analyzing antigen-antibody interaction before synthesizing the antibody. In this study, two highly conserved regions of dengue envelope protein were identified and an scFv was constructed against it. Both scFv and FuBc proteins were expressed in bacterial expression system and binding efficiency was analyzed by SPR analysis with KD value 2.3 µM. In order to improve binding efficiency, an in silico scFv mutant library was created which was virtually screened for higher binding efficiency. Six mutants with high binding efficiency were selected for further analysis. The binding ability of these mutants were predicted using simulation analysis which shows these mutations were stabilizing scFv-FuBc complex.


Subject(s)
Antibodies, Neutralizing/immunology , Dengue Virus/genetics , Dengue Virus/immunology , Animals , Antibodies, Neutralizing/genetics , Antibodies, Viral/immunology , Binding Sites, Antibody/genetics , Computer Simulation , Conserved Sequence/genetics , Dengue/immunology , Gene Library , Humans , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
16.
Bioorg Med Chem Lett ; 28(9): 1574-1580, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29606573

ABSTRACT

A series of functionalized naphthalene was synthesized and screened against human prostate cancer cell line (PC-3). The in vitro antiproliferative activity of the synthesized compounds was evaluated by monitoring their cytotoxic effects against PC-3 cells by using MTT assay. We observed that compound 5f resulted in more than 50% cell death at 14 µM. Treatment of PC-3 cells with 5f provides apoptosis by flow cytometry. Western blotting showed decreased expression of pro-caspase 8 and 9. Our study shows that cancer cell treated with 5f has higher concentration of reactive oxygen species as compare to untreated sample, which facilitate cancerous cell to enter apoptosis. Exact mechanism by which ROS is generated after 5f treatment is still under study. Molecular docking study further strengthens the results obtained from in vitro experiments. Compound 5f can be considered as a promising leads for anticancer agent against prostate cancer cells due to its potent cytotoxic activity and apoptotic effect.


Subject(s)
Antineoplastic Agents/pharmacology , Molecular Docking Simulation , Naphthalenes/pharmacology , Prostatic Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Prostatic Neoplasms/pathology , Structure-Activity Relationship
17.
Vet Q ; 36(4): 203-227, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27356470

ABSTRACT

Paratuberculosis (pTB) is a chronic granulomatous enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP) in a wide variety of domestic and wild animals. Control of pTB is difficult due to the lack of sensitive, efficacious and cost-effective diagnostics and marker vaccines. Microscopy, culture, and PCR have been used for the screening of MAP infection in animals for quite a long time. Besides, giving variable sensitivity and specificity, these tests have not been considered ideal for large-scale screening of domestic livestock. Serological tests like ELISA easily detects anti-MAP antibodies. However, it cannot differentiate between the vaccinated and infected animals. Nanotechnology-based diagnostic tests are underway to improve the sensitivity and specificity. Newer generation diagnostic tests based on recombinant MAP secretory proteins would open new paradigm for the differentiation between infected and vaccinated animals and for early detection of the infection. Due to higher seroreactivity of secretory proteins vis-à-vis cellular proteins, the secretory proteins may be used as marker vaccine, which may aid in the control of pTB infection in animals. Secretory proteins can be potentially used to develop future diagnostics, surveillance and monitoring of the disease progression in animals and the marker vaccine for the control and eradication of pTB.


Subject(s)
Livestock , Mycobacterium avium subsp. paratuberculosis/immunology , Paratuberculosis/diagnosis , Paratuberculosis/prevention & control , Animals , Bacterial Vaccines/immunology , Vaccines, Marker/immunology
18.
Eur J Med Chem ; 113: 34-49, 2016 May 04.
Article in English | MEDLINE | ID: mdl-26922227

ABSTRACT

The present study was carried out in an attempt to synthesize a new class of antimicrobial and antiplasmodial agents by copper catalyzed click chemistry to afford 25 compounds 10-14(a-e) of 1,4-disubstituted-1,2,3-triazole derivatives of chalcones and flavones. The structures of the newly synthesized compounds were established by elemental analysis, IR, (1)H NMR, (13)C NMR and Mass spectral data. The newly synthesized compounds were evaluated for their antibacterial activity against Gram positive bacteria (Staphylococcus aureus, Enterococcus faecalis), Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Shigella boydii, Klebsiella pneumoniae) and antifungal activity against (Candida albicans, Candida tropicalis, Candida parapsilosis, Cryptococcus neoformans, Dermatophyte) as well as molds (Aspergillus niger, Aspergillus fumigatus). The antiplasmodial and cytotoxic activities of these compounds were also evaluated against human malaria parasite Plasmodium falciparum strain 3D7 and human hepato-cellular carcinoma cells (Huh-7), respectively. Compounds 10a, 10c, 10d, 12c and 14e showed promising antibacterial activity while compounds 10e, 11d, 11e, 12c, 13a, 13b, 13e, 14a and 14d showed good antifungal activity as compared to the corresponding standard drugs. Compound 10b was found to be the most active against Plasmodium falciparum while the remaining compounds showed moderate to weak antiplasmodial activity. However, cytotoxic activities of all compounds were found ineffective against Huh-7 cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antimalarials/pharmacology , Bacteria/drug effects , Fungi/drug effects , Plasmodium falciparum/drug effects , Triazoles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antimalarials/chemical synthesis , Antimalarials/chemistry , Cell Line, Tumor , Chalcone/chemistry , Chalcone/pharmacology , Dose-Response Relationship, Drug , Flavones/chemistry , Flavones/pharmacology , Humans , Microbial Sensitivity Tests , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
19.
J Bacteriol ; 193(20): 5873-4, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21742876

ABSTRACT

Rheinheimera sp. strain A13L, which has antimicrobial activity, was isolated from alkaline brackish water of the high-altitude Pangong Lake of Ladakh, India. Here we report the draft genome sequence of Rhienheimera sp. strain A13L (4,523,491 bp with a G+C content of 46.23%). The genome is predicted to contain genes for marinocine and colicin V production, which may be responsible for the antimicrobial activity of the strain.


Subject(s)
Chromatiaceae/genetics , Chromatiaceae/isolation & purification , Fresh Water/microbiology , Genome, Bacterial , Base Sequence , Fresh Water/analysis , India , Molecular Sequence Data
20.
HFSP J ; 1(1): 67-78, 2007 May.
Article in English | MEDLINE | ID: mdl-19404461

ABSTRACT

Biological systems exhibit mutational robustness, or neutrality, whereby the impact of mutations is minimized. Does neutrality hamper their ability to adapt in the face of changing environments? We monitored changes in genotype and phenotype that occur within a neutral mutational network of an enzyme, experimentally and computationally (see accompanying article). Using the enzyme PON1 as a model, we performed random mutagenesis and purifying selection to purge deleterious mutations. We characterized approximately 300 variants that are apparently neutral, or close to neutral, with respect to PON1's levels of expression and native lactonase activity. Their activities with promiscuous substrates and ligands indicated significant changes in adaptive potentials. Almost half of the variants exhibited changes in promiscuous activities, specificities, or inhibition, and several of these were found to be one or two mutations, closer to potentially new phenotypes: aryl esterase, thiolactonase, phosphotriesterase, or drug resistance. This empirical measure of phenotypic changes under neutrality supports the notion that sequence changes that are neutral, i.e., non-adaptive, in a current context can facilitate adaptation under changing circumstances, by both expanding the activity range of existing enzymes and thus providing an immediate advantage, and by reducing the number of mutations required for divergence of new functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...