Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 5613407, 2022.
Article in English | MEDLINE | ID: mdl-36065368

ABSTRACT

Business development is dependent on a well-structured human resources (HR) system that maximizes the efficiency of an organization's human resources input and output. It is tough to provide adequate instructions for HR's unique task. In a time when the domestic labor market is still maturing, it is difficult for companies to make successful adjustments in HR structures to meet fluctuations in demand for human resources caused by shifting corporate strategies, operations, and size. Data on corporate human resources are often insufficient or inaccurate, which creates substantial nonlinearity and uncertainty when attempting to predict staffing needs, since human resource demand is influenced by numerous variables. The aim of this research is to predict the human resource demand using novel methods. Recurrent neural networks (RNNs) and grey wolf optimization (GWO) are used in this study to develop a new quantitative forecasting method for HR demand prediction. Initially, we collect the dataset and preprocess using normalization. The features are extracted using principal component analysis (PCA) and the proposed RNN with GWO effectively predicts the needs of HR. Moreover, organizations may be able to estimate personnel demand based on current circumstances, making forecasting more relevant and adaptive and enabling enterprises to accomplish their objectives via efficient human resource planning.


Subject(s)
Commerce , Neural Networks, Computer , Forecasting , Humans , Workforce
2.
Adv Neural Inf Process Syst ; 34: 6946-6959, 2021 Dec.
Article in English | MEDLINE | ID: mdl-36062138

ABSTRACT

Visual search is a ubiquitous and often challenging daily task, exemplified by looking for the car keys at home or a friend in a crowd. An intriguing property of some classical search tasks is an asymmetry such that finding a target A among distractors B can be easier than finding B among A. To elucidate the mechanisms responsible for asymmetry in visual search, we propose a computational model that takes a target and a search image as inputs and produces a sequence of eye movements until the target is found. The model integrates eccentricity-dependent visual recognition with target-dependent top-down cues. We compared the model against human behavior in six paradigmatic search tasks that show asymmetry in humans. Without prior exposure to the stimuli or task-specific training, the model provides a plausible mechanism for search asymmetry. We hypothesized that the polarity of search asymmetry arises from experience with the natural environment. We tested this hypothesis by training the model on augmented versions of ImageNet where the biases of natural images were either removed or reversed. The polarity of search asymmetry disappeared or was altered depending on the training protocol. This study highlights how classical perceptual properties can emerge in neural network models, without the need for task-specific training, but rather as a consequence of the statistical properties of the developmental diet fed to the model. All source code and data are publicly available at https://github.com/kreimanlab/VisualSearchAsymmetry.

SELECTION OF CITATIONS
SEARCH DETAIL
...