Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Eur J Cell Biol ; 102(2): 151322, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37211005

ABSTRACT

Many signaling processes rely on information decoding at the plasma membrane, and membrane-associated proteins and their complexes are fundamental for regulating this process. Still many questions exist as to how protein complexes are assembled and function at membrane sites to change identity and dynamics of membrane systems. Peripheral membrane proteins containing a calcium and phospholipid-binding C2-domain can act in membrane-related signaling by providing a tethering function so that protein complexes form. C2 domain proteins termed C2-DOMAIN ABSCISIC ACID-RELATED (CAR) proteins are plant-specific, and the functional relevance of this C2 domain protein subgroup is just emerging. The ten Arabidopsis CAR proteins CAR1 to CAR10 have a single C2 domain with a plant-specific insertion, the so-called "CAR-extra-signature" or also termed "sig domain". Via this "sig domain" CAR proteins can bind signaling protein complexes of different kinds and act in biotic and abiotic stress, blue light and iron nutrition. Interestingly, CAR proteins can oligomerize in membrane microdomains, and their presence in the nucleus can be linked with nuclear protein regulation. This shows that CAR proteins may play unprecedented roles in coordinating environmental responses and assembling required protein complexes to transmit information cues between plasma membrane and nucleus. The aim of this review is to summarize structure-function characteristics of the CAR protein family and assemble findings from CAR protein interactions and physiological functions. From this comparative investigation we extract common principles about the molecular operations that CAR proteins may fulfill in the cell. We also deduce functional properties of the CAR protein family based on its evolution and gene expression profiles. We highlight open questions and suggest novel avenues to prove and understand the functional networks and roles played by this protein family in plants.


Subject(s)
Abscisic Acid , Arabidopsis Proteins , Abscisic Acid/metabolism , Calcium/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Signal Transduction , Cell Membrane/metabolism
2.
Front Immunol ; 14: 1285345, 2023.
Article in English | MEDLINE | ID: mdl-38187394

ABSTRACT

Introduction: Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear. Methods: We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved. Results: Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients. Discussion: Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Critical Care , Aminopyridines , Oxazines , Pyridines
3.
Front Med (Lausanne) ; 9: 1008527, 2022.
Article in English | MEDLINE | ID: mdl-36405591

ABSTRACT

Candida auris is a globally emerging fungal pathogen responsible for causing nosocomial outbreaks in healthcare associated settings. It is known to cause infection in all age groups and exhibits multi-drug resistance with high potential for horizontal transmission. Because of this reason combined with limited therapeutic choices available, C. auris infection has been acknowledged as a potential risk for causing a future pandemic, and thus seeking a promising strategy for its treatment is imperative. Here, we combined evolutionary information with reverse vaccinology approach to identify novel epitopes for vaccine design that could elicit CD4+ T-cell responses against C. auris. To this end, we extensively scanned the family of proteins encoded by C. auris genome. In addition, a pathogen may acquire substitutions in epitopes over a period of time which could cause its escape from the immune response thus rendering the vaccine ineffective. To lower this possibility in our design, we eliminated all rapidly evolving genes of C. auris with positive selection. We further employed highly conserved regions of multiple C. auris strains and identified two immunogenic and antigenic T-cell epitopes that could generate the most effective immune response against C. auris. The antigenicity scores of our predicted vaccine candidates were calculated as 0.85 and 1.88 where 0.5 is the threshold for prediction of fungal antigenic sequences. Based on our results, we conclude that our vaccine candidates have the potential to be successfully employed for the treatment of C. auris infection. However, in vivo experiments are imperative to further demonstrate the efficacy of our design.

4.
Comput Struct Biotechnol J ; 20: 4225-4237, 2022.
Article in English | MEDLINE | ID: mdl-36051885

ABSTRACT

Biological networks are characterized by diverse interactions and dynamics in time and space. Many regulatory modules operate in parallel and are interconnected with each other. Some pathways are functionally known and annotated accordingly, e.g., endocytosis, migration, or cytoskeletal rearrangement. However, many interactions are not so well characterized. For reconstructing the biological complexity in cellular networks, we combine here existing experimentally confirmed and analyzed interactions with a protein-interaction inference framework using as basis experimentally confirmed interactions from other organisms. Prediction scoring includes sequence similarity, evolutionary conservation of interactions, the coexistence of interactions in the same pathway, orthology as well as structure similarity to rank and compare inferred interactions. We exemplify our inference method by studying host-pathogen interactions during infection of Mus musculus (phagolysosomes in alveolar macrophages) with Aspergillus fumigatus (conidia, airborne, asexual spores). Three of nine predicted critical host-pathogen interactions could even be confirmed by direct experiments. Moreover, we suggest drugs that manipulate the host-pathogen interaction.

5.
Int J Mol Sci ; 23(16)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36012377

ABSTRACT

After the recent emergence of SARS-CoV-2 infection, unanswered questions remain related to its evolutionary history, path of transmission or divergence and role of recombination. There is emerging evidence on amino acid substitutions occurring in key residues of the receptor-binding domain of the spike glycoprotein in coronavirus isolates from bat and pangolins. In this article, we summarize our current knowledge on the origin of SARS-CoV-2. We also analyze the host ACE2-interacting residues of the receptor-binding domain of spike glycoprotein in SARS-CoV-2 isolates from bats, and compare it to pangolin SARS-CoV-2 isolates collected from Guangdong province (GD Pangolin-CoV) and Guangxi autonomous regions (GX Pangolin-CoV) of South China. Based on our comparative analysis, we support the view that the Guangdong Pangolins are the intermediate hosts that adapted the SARS-CoV-2 and represented a significant evolutionary link in the path of transmission of SARS-CoV-2 virus. We also discuss the role of intermediate hosts in the origin of Omicron.


Subject(s)
COVID-19 , Chiroptera , Animals , China , Pangolins/genetics , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
6.
Biochem Biophys Res Commun ; 609: 15-22, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35413535

ABSTRACT

Parkinson's disease (PD) is a multifactorial ailment that severely affects the viability of dopaminergic neurons leading to progressive loss of motor control. The current regimen for PD treatment includes synthetic drugs that lack efficacy and cause serious side effects. Consequently, recent drug development studies are focusing on alternative medicines from plant sources. Artemisia pallens Wall. ex DC, commonly known as davana, is an annual aromatic herb cultivated in southern India. Given the diverse traditional and scientifically documented therapeutic effects of A. pallens, the pharmacological potential of the isolates of the plant, namely bicyclogermacrene (D1), cis-davanone (D3), and cis-hydroxy davanone (D5), was tested for anti-Parkinson's activity in Caenorhabditis elegans model. The tested compounds alleviated α-synuclein (α-syn) aggregation and maximum decline was observed in 25 µM D1 supplemented worms. Additionally, D1 modulated dopamine regulated nonanol-1 repulsion and locomotory behaviour of C. elegans validating its future use as a dopamine-enhancing agent. The genetic regulation mediating the above effects validated through the qPCR study showed that D1 supplementation displayed its anti-Parkinson's effect through upregulation of the antioxidant defence system genes (superoxide dismutase (sod)-1, sod-2, and sod-4) and PD associated pdr-1 gene that maintains the mitochondrial proteostasis. The molecular docking studies of C. elegans PDR-1 with D1 further confirmed its contribution in D1 induced abridgment of Parkinson disease linked pathologies in C. elegans disease model. Hence, this article proposes D1 as an effective regimen for curtailing the Parkinson disease linked pathologies through mechanism of maintaining cellular redox state and proteostasis.


Subject(s)
Artemisia , Caenorhabditis elegans Proteins , Parkinson Disease , Parkinsonian Disorders , Sesquiterpenes , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Disease Models, Animal , Dopamine/pharmacology , Dopaminergic Neurons/pathology , Molecular Docking Simulation , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/pathology , Sesquiterpenes/pharmacology , Superoxide Dismutase/pharmacology , alpha-Synuclein/genetics , alpha-Synuclein/pharmacology
7.
Comput Struct Biotechnol J ; 19: 5292-5308, 2021.
Article in English | MEDLINE | ID: mdl-34745452

ABSTRACT

Filovirus ebolavirus (ZE; Zaire ebolavirus, Bundibugyo ebolavirus), Neisseria meningitidis (NM), and Trypanosoma brucei (Tb) are serious infectious pathogens, spanning viruses, bacteria and protists and all may target the blood and central nervous system during their life cycle. NM and Tb are extracellular pathogens while ZE is obligatory intracellular, targetting immune privileged sites. By using interactomics and comparative evolutionary analysis we studied whether conserved human proteins are targeted by these pathogens. We examined 2797 unique pathogen-targeted human proteins. The information derived from orthology searches of experimentally validated protein-protein interactions (PPIs) resulted both in unique and shared PPIs for each pathogen. Comparing and analyzing conserved and pathogen-specific infection pathways for NM, TB and ZE, we identified human proteins predicted to be targeted in at least two of the compared host-pathogen networks. However, four proteins were common to all three host-pathogen interactomes: the elongation factor 1-alpha 1 (EEF1A1), the SWI/SNF complex subunit SMARCC2 (matrix-associated actin-dependent regulator of chromatin subfamily C), the dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 (RPN1), and the tubulin beta-5 chain (TUBB). These four human proteins all are also involved in cytoskeleton and its regulation and are often addressed by various human pathogens. Specifically, we found (i) 56 human pathogenic bacteria and viruses that target these four proteins, (ii) the well researched new pandemic pathogen SARS-CoV-2 targets two of these four human proteins and (iii) nine human pathogenic fungi (yet another evolutionary distant organism group) target three of the conserved proteins by 130 high confidence interactions.

8.
Int J Mol Sci ; 22(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34681944

ABSTRACT

A viral infection involves entry and replication of viral nucleic acid in a host organism, subsequently leading to biochemical and structural alterations in the host cell. In the case of SARS-CoV-2 viral infection, over-activation of the host immune system may lead to lung damage. Albeit the regeneration and fibrotic repair processes being the two protective host responses, prolonged injury may lead to excessive fibrosis, a pathological state that can result in lung collapse. In this review, we discuss regeneration and fibrosis processes in response to SARS-CoV-2 and provide our viewpoint on the triggering of alveolar regeneration in coronavirus disease 2019 (COVID-19) patients.


Subject(s)
COVID-19/pathology , Lung/physiology , Regeneration , COVID-19/virology , Epigenomics , Fibrosis , Humans , Immune System/metabolism , MicroRNAs/metabolism , SARS-CoV-2/isolation & purification , Signal Transduction
9.
Microorganisms ; 9(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34683335

ABSTRACT

Aspergillus is an important fungal genus containing economically important species, as well as pathogenic species of animals and plants. Using eighteen fungal species of the genus Aspergillus, we conducted a comprehensive investigation of conserved genes and their evolution. This also allows us to investigate the selection pressure driving the adaptive evolution in the pathogenic species A. fumigatus. Among single-copy orthologs (SCOs) for A. fumigatus and the closely related species A. fischeri, we identified 122 versus 50 positively selected genes (PSGs), respectively. Moreover, twenty conserved genes of unknown function were established to be positively selected and thus important for adaption. A. fumigatus PSGs interacting with human host proteins show over-representation of adaptive, symbiosis-related, immunomodulatory and virulence-related pathways, such as the TGF-ß pathway, insulin receptor signaling, IL1 pathway and interfering with phagosomal GTPase signaling. Additionally, among the virulence factor coding genes, secretory and membrane protein-coding genes in multi-copy gene families, 212 genes underwent positive selection and also suggest increased adaptation, such as fungal immune evasion mechanisms (aspf2), siderophore biosynthesis (sidD), fumarylalanine production (sidE), stress tolerance (atfA) and thermotolerance (sodA). These genes presumably contribute to host adaptation strategies. Genes for the biosynthesis of gliotoxin are shared among all the close relatives of A. fumigatus as an ancient defense mechanism. Positive selection plays a crucial role in the adaptive evolution of A. fumigatus. The genome-wide profile of PSGs provides valuable targets for further research on the mechanisms of immune evasion, antimycotic targeting and understanding fundamental virulence processes.

10.
Int Immunopharmacol ; 86: 106717, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32585611

ABSTRACT

The extensive efforts around the globe are being made to develop a suitable vaccine against COVID-19 (Coronavirus Disease-19) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2). An effective vaccine should be able to induce high titers of neutralizing antibodies to prevent the virus from attaching to the host cell receptors. However, to elicit the protective levels of antibodies, a vaccine may require multiple doses or assistance from other immunostimulatory molecules. Further, the vaccine should be able to induce protective levels of antibodies rapidly with the least amount of antigen used. This decreases the cost of a vaccine and makes it affordable. As the pandemic has hit most countries across the globe, there will be an overwhelming demand for the vaccine in a quick time. Incorporating a suitable adjuvant in a SARS-CoV-2 vaccine may address these requirements. This review paper will discuss the experimental results of the adjuvanted vaccine studies with similar coronaviruses (CoVs) which might be useful to select an appropriate adjuvant for a vaccine against rapidly emergingSARS-CoV-2. We also discuss the current progress in the development of adjuvanted vaccines against the disease.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Drug Development , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Immunogenicity, Vaccine , Middle East Respiratory Syndrome Coronavirus/immunology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Viral Vaccines/administration & dosage
11.
Sci Rep ; 10(1): 2334, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32047225

ABSTRACT

Apart from some model organisms, the interactome of most organisms is largely unidentified. High-throughput experimental techniques to determine protein-protein interactions (PPIs) are resource intensive and highly susceptible to noise. Computational methods of PPI determination can accelerate biological discovery by identifying the most promising interacting pairs of proteins and by assessing the reliability of identified PPIs. Here we present a first in-depth study describing a global view of the ant Camponotus floridanus interactome. Although several ant genomes have been sequenced in the last eight years, studies exploring and investigating PPIs in ants are lacking. Our study attempts to fill this gap and the presented interactome will also serve as a template for determining PPIs in other ants in future. Our C. floridanus interactome covers 51,866 non-redundant PPIs among 6,274 proteins, including 20,544 interactions supported by domain-domain interactions (DDIs), 13,640 interactions supported by DDIs and subcellular localization, and 10,834 high confidence interactions mediated by 3,289 proteins. These interactions involve and cover 30.6% of the entire C. floridanus proteome.


Subject(s)
Gene Ontology , Gene Regulatory Networks , Genome, Insect , Insect Proteins/metabolism , Protein Interaction Domains and Motifs , Protein Interaction Maps , Proteome/analysis , Animals , Ants , Insect Proteins/genetics , Molecular Sequence Annotation
12.
Sci Rep ; 9(1): 15711, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31673088

ABSTRACT

Protein-protein interaction (PPI) studies are gaining momentum these days due to the plethora of various high-throughput experimental methods available for detecting PPIs. Proteins create complexes and networks by functioning in harmony with other proteins and here in silico network biology hold the promise to reveal new functionality of genes as it is very difficult and laborious to carry out experimental high-throughput genetic screens in living organisms. We demonstrate this approach by computationally screening C. elegans conserved homologs of already reported human tumor suppressor and aging associated genes. We select by this nhr-6, vab-3 and gst-23 as predicted longevity genes for RNAi screen. The RNAi results demonstrated the pro-longevity effect of these genes. Nuclear hormone receptor nhr-6 RNAi inhibition resulted in a C. elegans phenotype of 23.46% lifespan reduction. Moreover, we show that nhr-6 regulates oxidative stress resistance in worms and does not affect the feeding behavior of worms. These findings imply the potential of nhr-6 as a common therapeutic target for aging and cancer ailments, stressing the power of in silico PPI network analysis coupled with RNAi screens to describe gene function.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Genes, Tumor Suppressor , Molecular Probes , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , RNA Interference , Animals , Caenorhabditis elegans/genetics , Humans , Protein Interaction Maps
13.
Article in English | MEDLINE | ID: mdl-31192161

ABSTRACT

Dendritic cells (DCs) are antigen presenting cells which serve as a passage between the innate and the acquired immunity. Aspergillosis is a major lethal condition in immunocompromised patients caused by the adaptable saprophytic fungus Aspergillus fumigatus. The healthy human immune system is capable to ward off A. fumigatus infections however immune-deficient patients are highly vulnerable to invasive aspergillosis. A. fumigatus can persist during infection due to its ability to survive the immune response of human DCs. Therefore, the study of the metabolism specific to the context of infection may allow us to gain insight into the adaptation strategies of both the pathogen and the immune cells. We established a metabolic model of A. fumigatus central metabolism during infection of DCs and calculated the metabolic pathway (elementary modes; EMs). Transcriptome data were used to identify pathways activated when A. fumigatus is challenged with DCs. In particular, amino acid metabolic pathways, alternative carbon metabolic pathways and stress regulating enzymes were found to be active. Metabolic flux modeling identified further active enzymes such as alcohol dehydrogenase, inositol oxygenase and GTP cyclohydrolase participating in different stress responses in A. fumigatus. These were further validated by qRT-PCR from RNA extracted under these different conditions. For DCs, we outlined the activation of metabolic pathways in response to the confrontation with A. fumigatus. We found the fatty acid metabolism plays a crucial role, along with other metabolic changes. The gene expression data and their analysis illuminate additional regulatory pathways activated in the DCs apart from interleukin regulation. In particular, Toll-like receptor signaling, NOD-like receptor signaling and RIG-I-like receptor signaling were active pathways. Moreover, we identified subnetworks and several novel key regulators such as UBC, EGFR, and CUL3 of DCs to be activated in response to A. fumigatus. In conclusion, we analyze the metabolic and regulatory responses of A. fumigatus and DCs when confronted with each other.


Subject(s)
Aspergillus fumigatus/immunology , Aspergillus fumigatus/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Host-Pathogen Interactions/immunology , Aspergillus fumigatus/genetics , Aspergillus fumigatus/pathogenicity , Cytokines/metabolism , Gene Expression , Host-Pathogen Interactions/physiology , Humans , Interleukins/metabolism , Metabolic Networks and Pathways , NLR Proteins/metabolism , Signal Transduction , Toll-Like Receptors/metabolism , Transcriptome
14.
Crit Care ; 22(1): 287, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30382866

ABSTRACT

BACKGROUND: Community-acquired pneumonia (CAP) remains a major cause of death worldwide. Mechanisms underlying the detrimental outcome despite adequate antibiotic therapy and comorbidity management are still not fully understood. METHODS: To model timely versus delayed antibiotic therapy in patients, mice with pneumococcal pneumonia received ampicillin twice a day starting early (24 h) or late (48 h) after infection. Clinical readouts and local and systemic inflammatory mediators after early and late antibiotic intervention were examined. RESULTS: Early antibiotic intervention rescued mice, limited clinical symptoms and restored fitness, whereas delayed therapy resulted in high mortality rates. Recruitment of innate immune cells remained unaffected by antibiotic therapy. However, both early and late antibiotic intervention dampened local levels of inflammatory mediators in the alveolar spaces. Early treatment protected from barrier breakdown, and reduced levels of vascular endothelial growth factor (VEGF) and perivascular and alveolar edema formation. In contrast, at 48 h post infection, increased pulmonary leakage was apparent and not reversed by late antibiotic treatment. Concurrently, levels of VEGF remained high and no beneficial effect on edema formation was evident despite therapy. Moreover, early but not late treatment protected mice from a vast systemic inflammatory response. CONCLUSIONS: Our data show that only early antibiotic therapy, administered prior to breakdown of the alveolar-capillary barrier and systemic inflammation, led to restored fitness and rescued mice from fatal streptococcal pneumonia. The findings highlight the importance of identifying CAP patients prior to lung barrier failure and systemic inflammation and of handling CAP as a medical emergency.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Pneumonia, Pneumococcal/drug therapy , Pneumonia, Pneumococcal/mortality , Time Factors , Ampicillin/administration & dosage , Ampicillin/therapeutic use , Analysis of Variance , Animals , Anti-Bacterial Agents/therapeutic use , Bronchoalveolar Lavage Fluid/cytology , Chemokine CCL2/analysis , Chemokine CCL2/blood , Chemokine CCL3/analysis , Chemokine CCL3/blood , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay/methods , Female , Mice , Mice, Inbred C57BL , Statistics, Nonparametric , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/pathogenicity , Survival Analysis
15.
Mol Omics ; 14(5): 330-340, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30113617

ABSTRACT

Borrelia burgdorferi is an extracellular spirochete that causes Lyme disease. Currently, no effective vaccine is available for humans and animals except for dogs. In the present study, an extensive bioinformatics pipeline was established to predict new candidates that can be used for vaccine development including building the protein-protein interaction network based on orthologues of experimentally verified protein-protein interaction networks, elucidation of the proteins involved in the immune response, selection of the topologically-interesting proteins and their prioritization based on their antigenicity. Proteomic network analysis yielded an interactome network with 120 nodes with 97 interactions. Proteins were selected to obtain a subnet containing only the borrelial membrane proteins and immune-related host proteins. This strategy resulted in the selection of 15 borrelial targets, which were subjected to extensive bioinformatics analysis to predict their antigenic properties. Based on the strategy applied in this study the proteins encoded by erpX (ErpX proteins, UniProt ID: H7C7L6), erpL (ErpL protein, UniProt ID: H7C7M3) and erpY (ErpY protein, UniProt ID: Q9S0D9) are suggested as a novel set of vaccine targets to control Lyme disease. Moreover, five different tools were used to validate their antigenicity regarding B-cells. The combination of all these proteins in a vaccine should allow improved protection against Borrelia infection.


Subject(s)
Bacterial Outer Membrane Proteins/immunology , Borrelia burgdorferi/immunology , Lyme Disease Vaccines/therapeutic use , Lyme Disease/prevention & control , Animals , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/therapeutic use , Borrelia burgdorferi/genetics , Borrelia burgdorferi/pathogenicity , Computational Biology , Humans , Lyme Disease/genetics , Lyme Disease/immunology , Lyme Disease/microbiology , Lyme Disease Vaccines/immunology , Mice , Protein Interaction Maps/genetics , Protein Interaction Maps/immunology , Proteomics
16.
J Fungi (Basel) ; 4(3)2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29973534

ABSTRACT

Aspergillus fumigatus is a saprophytic, cosmopolitan fungus that attacks patients with a weak immune system. A rational solution against fungal infection aims to manipulate fungal metabolism or to block enzymes essential for Aspergillus survival. Here we discuss and compare different bioinformatics approaches to analyze possible targeting strategies on fungal-unique pathways. For instance, phylogenetic analysis reveals fungal targets, while domain analysis allows us to spot minor differences in protein composition between the host and fungi. Moreover, protein networks between host and fungi can be systematically compared by looking at orthologs and exploiting information from host⁻pathogen interaction databases. Further data—such as knowledge of a three-dimensional structure, gene expression data, or information from calculated metabolic fluxes—refine the search and rapidly put a focus on the best targets for antimycotics. We analyzed several of the best targets for application to structure-based drug design. Finally, we discuss general advantages and limitations in identification of unique fungal pathways and protein targets when applying bioinformatics tools.

17.
Gene ; 591(1): 268-278, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27425866

ABSTRACT

We investigate a drug target screening pipeline comparing sequence, structure and network-based criteria for prioritization. Serratia marcescens, an opportunistic pathogen, serves as test case. We rank according to (i) availability of three dimensional structures and lead compounds, (ii) not occurring in man and general sequence conservation information, and (iii) network information on the importance of the protein (conserved protein-protein interactions; metabolism; reported to be an essential gene in other organisms). We identify 45 potential anti-microbial drug targets in S. marcescens with KdsA involved in LPS biosynthesis as top candidate drug target. LpxC and FlgB are further top-ranked targets identified by interactome analysis not suggested before for S. marcescens. Pipeline, targets and complementarity of the three approaches are evaluated by available experimental data and genetic evidence and against other antibiotic screening pipelines. This supports reliable drug target identification and prioritization for infectious agents (bacteria, parasites, fungi) by these bundled complementary criteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Protein Interaction Maps , Serratia marcescens/metabolism , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Drug Resistance, Microbial/drug effects , Humans , Sequence Homology, Amino Acid
18.
Front Mol Biosci ; 3: 22, 2016.
Article in English | MEDLINE | ID: mdl-27379244

ABSTRACT

New antimycotic drugs are challenging to find, as potential target proteins may have close human orthologs. We here focus on identifying metabolic targets that are critical for fungal growth and have minimal similarity to targets among human proteins. We compare and combine here: (I) direct metabolic network modeling using elementary mode analysis and flux estimates approximations using expression data, (II) targeting metabolic genes by transcriptome analysis of condition-specific highly expressed enzymes, and (III) analysis of enzyme structure, enzyme interconnectedness ("hubs"), and identification of pathogen-specific enzymes using orthology relations. We have identified 64 targets including metabolic enzymes involved in vitamin synthesis, lipid, and amino acid biosynthesis including 18 targets validated from the literature, two validated and five currently examined in own genetic experiments, and 38 further promising novel target proteins which are non-orthologous to human proteins, involved in metabolism and are highly ranked drug targets from these pipelines.

19.
Proteomes ; 4(1)2016 Feb 19.
Article in English | MEDLINE | ID: mdl-28248218

ABSTRACT

Staphylococcus aureus is an important model organism and pathogen. This S. aureus proteome overview details shared and specific proteins and selected virulence-relevant protein complexes from representative strains of all three major clades. To determine the strain distribution and major clades we used a refined strain comparison combining ribosomal RNA, MLST markers, and looking at highly-conserved regions shared between strains. This analysis shows three sub-clades (A-C) for S. aureus. As calculations are complex and strain annotation is quite time consuming we compare here key representatives of each clade with each other: model strains COL, USA300, Newman, and HG001 (clade A), model strain N315 and Mu50 (clade B) and ED133 and MRSA252 (clade C). We look at these individual proteomes and compare them to a background of 64 S. aureus strains. There are overall 13,284 S. aureus proteins not part of the core proteome which are involved in different strain-specific or more general complexes requiring detailed annotation and new experimental data to be accurately delineated. By comparison of the eight representative strains, we identify strain-specific proteins (e.g., 18 in COL, 105 in N315 and 44 in Newman) that characterize each strain and analyze pathogenicity islands if they contain such strain-specific proteins. We identify strain-specific protein repertoires involved in virulence, in cell wall metabolism, and phosphorylation. Finally we compare and analyze protein complexes conserved and well-characterized among S. aureus (a total of 103 complexes), as well as predict and analyze several individual protein complexes, including structure modeling in the three clades.

20.
3 Biotech ; 6(1): 39, 2016 Jun.
Article in English | MEDLINE | ID: mdl-28330110

ABSTRACT

Human papilloma virus (HPV) is the primary etiological agent responsible for cervical cancer in women. Although in total 16 high-risk HPV strains have been identified so far. Currently available commercial vaccines are designed by targeting mainly HPV16 and HPV18 viral strains as these are the most common strains associated with cervical cancer. Because of the high level of antigenic specificity of HPV capsid antigens, the currently available vaccines are not suitable to provide cross-protection from all other high-risk HPV strains. Due to increasing reports of cervical cancer cases from other HPV high-risk strains other than HPV16 and 18, it is crucial to design vaccine that generate reasonable CD8+ T-cell responses for possibly all the high-risk strains. With this aim, we have developed a computational workflow to identify conserved cross-clade CD8+ T-cell HPV vaccine candidates by considering E1, E2, E6 and E7 proteins from all the high-risk HPV strains. We have identified a set of 14 immunogenic conserved peptide fragments that are supposed to provide protection against infection from any of the high-risk HPV strains across globe.

SELECTION OF CITATIONS
SEARCH DETAIL
...