Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Oncol ; 2019: 7469284, 2019.
Article in English | MEDLINE | ID: mdl-31379944

ABSTRACT

[This corrects the article DOI: 10.1155/2012/709739.].

2.
Metabolites ; 9(3)2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30871192

ABSTRACT

The growth and development of non-small cell lung cancer (NSCLC) primarily depends on glutamine. Both glutamine and essential amino acids (EAAs) have been reported to upregulate mTOR in NSCLC, which is a bioenergetics sensor involved in the regulation of cell growth, cell survival, and protein synthesis. Seen as novel concepts in cancer development, ASCT2 and LAT transporters allow glutamine and EAAs to enter proliferating tumors as well as send a regulatory signal to mTOR. Blocking or downregulating these glutamine transporters in order to inhibit glutamine uptake would be an excellent therapeutic target for treatment of NSCLC. This study aimed to validate the metabolic dysregulation of glutamine and its derivatives in NSCLC using cellular 1H-NMR metabolomic approach while exploring the mechanism of delta-tocotrienol (δT) on glutamine transporters, and mTOR pathway. Cellular metabolomics analysis showed significant inhibition in the uptake of glutamine, its derivatives glutamate and glutathione, and some EAAs in both cell lines with δT treatment. Inhibition of glutamine transporters (ASCT2 and LAT1) and mTOR pathway proteins (P-mTOR and p-4EBP1) was evident in Western blot analysis in a dose-dependent manner. Our findings suggest that δT inhibits glutamine transporters, thus inhibiting glutamine uptake into proliferating cells, which results in the inhibition of cell proliferation and induction of apoptosis via downregulation of the mTOR pathway.

3.
Nutr Cancer ; 70(7): 1075-1087, 2018 10.
Article in English | MEDLINE | ID: mdl-30273070

ABSTRACT

Pancreatic cancer (PC) patients have poor prognosis and survival rate. Gemcitabine, the drug of choice has a dismal 15% response rate. Earlier, we reported that Garcinol alone and in combination with gemcitabine showed a dose-dependent favorable response on PC cell lines. This study probes the in vivo effects of dietary Garcinol on PC progression in transgenic PC mice (KPC; K-ras and p53 conditional mutant). KPC male mice were divided into: KC- Control diet; KGr-0.05% Garcinol diet; KGm-Gemcitabine injected; KGG - Garcinol diet + Gemcitabine injected groups. Changes in tumor progression, toxicity, or cell morphology were monitored by magnetic resonance imaging, Fore-stomach, and blood smear, respectively. Pancreatic Intraepithelial Neoplasia (mPanIN) grading with hematoxylin and eosin (H&E) staining was conducted on pancreas and validated by immunohistochemistry. The KGr group showed improved survival, no observable toxicity with marked reduction in papilloma formation in the fore-stomach, and a higher ratio of NK and NKT cells compared to Non-NK lymphocytes. Additionally, the KGr, KGm, and KGG groups showed reduction in tumor volumes and reduced number of advanced mouse PanIN3. Dietary Garcinol alone and in combination with gemcitabine retarded the progression of PC in transgenic PC mice, arresting the cancer in the earlier stages, improving prognosis and survival.


Subject(s)
Pancreatic Neoplasms/diet therapy , Terpenes/pharmacology , Animals , Antineoplastic Agents, Phytogenic/adverse effects , Antineoplastic Agents, Phytogenic/pharmacology , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Dietary Supplements , Genes, p53 , Genes, ras , Humans , Magnetic Resonance Imaging , Male , Mice, Transgenic , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/drug therapy , S100 Calcium Binding Protein beta Subunit/immunology , Smad4 Protein/immunology , Survival Rate , Terpenes/adverse effects , Gemcitabine
4.
Onco Targets Ther ; 11: 4301-4314, 2018.
Article in English | MEDLINE | ID: mdl-30100736

ABSTRACT

BACKGROUND: Delta-tocotrienol (δT), an isomer of vitamin E, exhibits anticancer properties in different cancer types including non-small-cell lung cancer (NSCLC). Yet, anti-invasive effects of δT and its underlying cellular mechanism in NSCLC have not been fully explored. Matrix metalloproteinase 9 (MMP-9)-based cell migration and invasion are critical cellular mechanisms in cancer development. The current evidence indicates that MMP-9 is upregulated in most patients, and the inhibition of MMPs is involved in decreasing invasion and metastasis in NSCLC. Therefore, its suppression is a promising strategy for attenuating cell invasion and metastasis processes in NSCLC. PURPOSE: The aim of this study was to evaluate the possibility of MMP-9 inhibition as the underlying mechanism behind the antimetastatic properties of δT on NSCLC cells. METHODS: The effects of δT on cell proliferation, migration, invasion, adhesion, and aggregation capabilities were investigated using different cell-based assays. An inhibitory effect of MMP-9 enzyme activity with δT was also identified using gel zymography. Using real-time PCR and Western blot analysis, a number of cellular proteins, regulatory genes, and miRNA involved in the Notch-1 and urokinase-type plasminogen activator (uPA)-mediated MMP-9 pathways were examined. RESULTS: The study found that δT inhibited cell proliferation, cell migration, invasion, aggregation, and adhesion in a concentration-dependent manner and reduced MMP-9 activities. Real-time PCR and Western blot analysis data revealed that δT increased miR-451 expressions and downregulated Notch-1-mediated nuclear factor-κB (NF-κB), which led to the repressed expression of MMP-9 and uPA proteins. CONCLUSION: δT attenuated tumor invasion and metastasis by the repression of MMP-9/uPA via downregulation of Notch-1 and NF-κB pathways and upregulation of miR-451. The data suggest that δT may have potential therapeutic benefit against NSCLC metastasis.

5.
J Oncol ; 2012: 709739, 2012.
Article in English | MEDLINE | ID: mdl-22685460

ABSTRACT

Pancreatic cancer (PaCa) is a major health concern due to its aggressiveness and early metastasis. Current treatments for PaCa are limited by development of resistance against therapy. As an alternative strategy, we assessed the combinatorial effect of dietary compounds, garcinol and curcumin, on human PaCa cells (BxPC-3 and Panc-1). A significant (P < 0.05) dose-dependent reduction in cell viability and increase in apoptosis were observed in both cell lines as compared to untreated controls. A combination index (CI) value < 1, for a two-way comparison of curcumin and garcinol, suggests synergism. The potency (Dm) of the combination of garcinol and curcumin was 2 to 10 fold that of the individual agents. This indicates that curcumin and garcinol in combination exhibit a high level of synergism, with enhanced bioactivity, thereby reducing the required effective dose required for each individually. This combinatorial strategy may hold promise in future development of therapies against PaCa.

6.
J Nutr ; 133(8): 2600-6, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12888644

ABSTRACT

This study was designed to evaluate whether replacing approximately 40 g/100 g dietary animal fat with vegetable oil would improve plasma lipids and lipoproteins when diets contained prudent levels of total saturated acid (SFA), monounsaturated acid (MUFA) and PUFA. Using a cross-over design, male Cynomolgus monkeys (n = 10) were fed purified diets containing a mixture of fats. For the diet based on animal fat (AF-diet), approximately 85 g/100 g of the total fat was derived from pork fat, and approximately 40 g/100 g of this was replaced with olive oil for the vegetable oil-based diet (VO-diet). Thus, the fat content of the VO diet comprised 50% pork fat and 35% olive oil. The remaining 15% of the total fat (for both diets) was safflower oil. Both diets provided approximately 30% of total energy (%en) from fat, <10%en SFA and approximately 6-7%en from PUFA. Monkeys were rotated through two 7-wk feeding periods, during which time plasma lipids and lipoproteins were evaluated. Compared with the AF diet, plasma total cholesterol (TC) concentrations tended to be lower ( approximately 10%) after monkeys consumed the VO diet (3.18 +/- 0.83 vs. 3.52 +/- 0.93 mmol/L, P = 0.099), and this was due entirely to a significant 12% reduction in HDL cholesterol (1.53 +/- 0.41 vs. 1.73 +/- 0.47, mmol/L, P = 0.0009). Although plasma lipoprotein compositional analyses revealed no significant differences in either lipoprotein composition or the estimated particle diameters, the measurement of cholesterol ester transfer protein (CETP) using (3)H-cholesterol ester-labeled HDL revealed that the lower HDL cholesterol (HDL-C) when monkeys consumed the VO diet was associated with a 31% increase in transfer (P = 0.04). However, despite the changes in HDL-C, the TC/HDL-C ratio did not differ between monkeys after the two diet treatments. Regression analyses of data from these monkeys revealed a significant correlation between the dietary 16:0/18:2 ratio and plasma HDL-C. These data suggest that within the context of currently recommended prudent diets, it may be possible to manipulate HDL-C beneficially. Whether a similar effect would occur in humans warrants investigation.


Subject(s)
Carrier Proteins/blood , Cholesterol, HDL/blood , Dietary Fats/pharmacology , Glycoproteins , Plant Oils/pharmacology , Animals , Cholesterol Ester Transfer Proteins , Macaca fascicularis , Male , Osmolar Concentration , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...