Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE J Transl Eng Health Med ; 12: 371-381, 2024.
Article in English | MEDLINE | ID: mdl-38633564

ABSTRACT

Brain state classification by applying deep learning techniques on neuroimaging data has become a recent topic of research. However, unlike domains where the data is low dimensional or there are large number of available training samples, neuroimaging data is high dimensional and has few training samples. To tackle these issues, we present a sparse feedforward deep neural architecture for encoding and decoding the structural connectome of the human brain. We use a sparsely connected element-wise multiplication as the first hidden layer and a fixed transform layer as the output layer. The number of trainable parameters and the training time is significantly reduced compared to feedforward networks. We demonstrate superior performance of this architecture in encoding the structural connectome implicated in Alzheimer's disease (AD) and Parkinson's disease (PD) from DTI brain scans. For decoding, we propose recursive feature elimination (RFE) algorithm based on DeepLIFT, layer-wise relevance propagation (LRP), and Integrated Gradients (IG) algorithms to remove irrelevant features and thereby identify key biomarkers associated with AD and PD. We show that the proposed architecture reduces 45.1% and 47.1% of the trainable parameters compared to a feedforward DNN with an increase in accuracy by 2.6 % and 3.1% for cognitively normal (CN) vs AD and CN vs PD classification, respectively. We also show that the proposed RFE method leads to a further increase in accuracy by 2.1% and 4% for CN vs AD and CN vs PD classification, while removing approximately 90% to 95% irrelevant features. Furthermore, we argue that the biomarkers (i.e., key brain regions and connections) identified are consistent with previous literature. We show that relevancy score-based methods can yield high discriminative power and are suitable for brain decoding. We also show that the proposed approach led to a reduction in the number of trainable network parameters, an increase in classification accuracy, and a detection of brain connections and regions that were consistent with earlier studies.


Subject(s)
Alzheimer Disease , Connectome , Humans , Magnetic Resonance Imaging/methods , Connectome/methods , Neural Networks, Computer , Neuroimaging/methods , Biomarkers
2.
Hum Brain Mapp ; 43(9): 2801-2816, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35224817

ABSTRACT

Functional magnetic resonance imaging (fMRI) is used to capture complex and dynamic interactions between brain regions while performing tasks. Task related alterations in the brain have been classified as task specific and task general, depending on whether they are particular to a task or common across multiple tasks. Using recent attempts in interpreting deep learning models, we propose an approach to determine both task specific and task general architectures of the functional brain. We demonstrate our methods with a reference-based decoder on deep learning classifiers trained on 12,500 rest and task fMRI samples from the Human Connectome Project (HCP). The decoded task general and task specific motor and language architectures were validated with findings from previous studies. We found that unlike intersubject variability that is characteristic of functional pathology of neurological diseases, a small set of connections are sufficient to delineate the rest and task states. The nodes and connections in the task general architecture could serve as potential disease biomarkers as alterations in task general brain modulations are known to be implicated in several neuropsychiatric disorders.


Subject(s)
Connectome , Brain/diagnostic imaging , Connectome/methods , Humans , Language , Magnetic Resonance Imaging/methods , Nerve Net , Rest
3.
Sensors (Basel) ; 20(18)2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32906819

ABSTRACT

The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for the analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, we provide a brief mathematical description of 3D CNN and provide the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models in general) and possible future trends in the field.


Subject(s)
Deep Learning , Imaging, Three-Dimensional , Humans , Machine Learning , Neural Networks, Computer
4.
Sci Rep ; 10(1): 7590, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32371990

ABSTRACT

Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain functional modules involve multiple functional Magnetic Resonance Imaging (fMRI) scans, the methods used to derive functional modules from functional networks of the brain ignore individual differences in the functional architecture and use incomplete functional connectivity information. To correct this, we propose an Iterative Consensus Spectral Clustering (ICSC) algorithm that detects the most representative modules from individual dense weighted connectivity matrices derived from multiple scans. The ICSC algorithm derives group-level modules from modules of multiple individuals by iteratively minimizing the consensus-cost between the two. We demonstrate that the ICSC algorithm can be used to derive biologically plausible group-level (for multiple subjects) and subject-level (for multiple subject scans) brain modules, using resting-state fMRI scans of 589 subjects from the Human Connectome Project. We employed a multipronged strategy to show the validity of the modularizations obtained from the ICSC algorithm. We show a heterogeneous variability in the modular structure across subjects where modules involved in visual and motor processing were highly stable across subjects. Conversely, we found a lower variability across scans of the same subject. The performance of our algorithm was compared with existing functional brain modularization methods and we show that our method detects group-level modules that are more representative of the modules of multiple individuals. Finally, the experiments on synthetic images quantitatively demonstrate that the ICSC algorithm detects group-level and subject-level modules accurately under varied conditions. Therefore, besides identifying functional modules for a population of subjects, the proposed method can be used for applications in personalized neuroscience. The ICSC implementation is available at https://github.com/SCSE-Biomedical-Computing-Group/ICSC.

5.
Neuroimage Clin ; 25: 102186, 2020.
Article in English | MEDLINE | ID: mdl-32000101

ABSTRACT

Functional modules in the human brain support its drive for specialization whereas brain hubs act as focal points for information integration. Brain hubs are brain regions that have a large number of both within and between module connections. We argue that weak connections in brain functional networks lead to misclassification of brain regions as hubs. In order to resolve this, we propose a new measure called ambivert degree that considers the node's degree as well as connection weights in order to identify nodes with both high degree and high connection weights as hubs. Using resting-state functional MRI scans from the Human Connectome Project, we show that ambivert degree identifies brain hubs that are not only crucial but also invariable across subjects. We hypothesize that nodal measures based on ambivert degree can be effectively used to classify patients from healthy controls for diseases that are known to have widespread hub disruption. Using patient data for Alzheimer's Disease and Autism Spectrum Disorder, we show that the hubs in the patient and healthy groups are very different for both the diseases and deep feedforward neural networks trained on nodal hub features lead to a significantly higher classification accuracy with significantly fewer trainable weights compared to using functional connectivity features. Thus, the ambivert degree improves identification of crucial brain hubs in healthy subjects and can be used as a diagnostic feature to detect neurological diseases characterized by hub disruption.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/physiopathology , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/physiopathology , Cerebral Cortex/diagnostic imaging , Connectome/methods , Deep Learning , Nerve Net/diagnostic imaging , Adolescent , Adult , Aged , Cerebral Cortex/physiopathology , Child , Humans , Magnetic Resonance Imaging , Nerve Net/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...