Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(9)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37760182

ABSTRACT

The blood-brain barrier (BBB) is a dynamic interface that regulates the molecular exchanges between the brain and peripheral blood. The permeability of the BBB is primarily regulated by the junction proteins on the brain endothelial cells. In vitro BBB models have shown great potential for the investigation of the mechanisms of physiological function, pathologies, and drug delivery in the brain. However, few studies have demonstrated the ability to monitor and evaluate the barrier integrity by quantitatively analyzing the junction presentation in 3D microvessels. This study aimed to fabricate a simple vessel-on-chip, which allows for a rigorous quantitative investigation of junction presentation in 3D microvessels. To this end, we developed a rapid protocol that creates 3D microvessels with polydimethylsiloxane and microneedles. We established a simple vessel-on-chip model lined with human iPSC-derived brain microvascular endothelial-like cells (iBMEC-like cells). The 3D image of the vessel structure can then be "unwrapped" and converted to 2D images for quantitative analysis of cell-cell junction phenotypes. Our findings revealed that 3D cylindrical structures altered the phenotype of tight junction proteins, along with the morphology of cells. Additionally, the cell-cell junction integrity in our 3D models was disrupted by the tumor necrosis factor α. This work presents a "quick and easy" 3D vessel-on-chip model and analysis pipeline, together allowing for the capability of screening and evaluating the cell-cell junction integrity of endothelial cells under various microenvironment conditions and treatments.

2.
Acta Biomater ; 167: 109-120, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37302732

ABSTRACT

The blood-brain barrier (BBB) can respond to various mechanical cues such as shear stress and substrate stiffness. In the human brain, the compromised barrier function of the BBB is closely associated with a series of neurological disorders that are often also accompanied by the alteration of brain stiffness. In many types of peripheral vasculature, higher matrix stiffness decreases barrier function of endothelial cells through mechanotransduction pathways that alter cell-cell junction integrity. However, human brain endothelial cells are specialized endothelial cells that largely resist changes in cell morphology and key BBB markers. Therefore, it has remained an open question how matrix stiffness affects barrier integrity in the human BBB. To gain insight into the effects of matrix stiffness on BBB permeability, we differentiated brain microvascular endothelial-like cells from human induced pluripotent stem cells (iBMEC-like cells) and cultured the cells on extracellular matrix-coated hydrogels of varying stiffness. We first detected and quantified the junction presentation of key tight junction (TJ) proteins. Our results show matrix-dependent junction phenotypes in iBMEC-like cells, where cells on softer gels (1 kPa) have significantly lower continuous and total TJ coverages. We also determined that these softer gels also lead to decreased barrier function in a local permeability assay. Furthermore, we found that matrix stiffness regulates the local permeability of iBMEC-like cells through the balance of continuous ZO-1 TJs and no junction regions ZO-1 in tricellular regions. Together, these findings provide valuable insights into the effects of matrix stiffness on TJ phenotypes and local permeability of iBMEC-like cells. STATEMENT OF SIGNIFICANCE: Brain mechanical properties, including stiffness, are particularly sensitive indicators for pathophysiological changes in neural tissue. The compromised function of the blood-brain barrier is closely associated with a series of neurological disorders often accompanied by altered brain stiffness. In this study, we use polymeric biomaterials and provide new evidence that biomaterial stiffness regulates the local permeability in iPSC-derived brain endothelial cells in tricellular regions through the tight junction protein ZO-1. Our findings provide valuable insights into the changes in junction architecture and barrier permeability in response to different substrate stiffnesses. Since BBB dysfunction has been linked to many diseases, understanding the influence of substrate stiffness on junction presentations and barrier permeability could lead to the development of new treatments for diseases associated with BBB dysfunction or drug delivery across BBB systems.


Subject(s)
Blood-Brain Barrier , Induced Pluripotent Stem Cells , Humans , Blood-Brain Barrier/metabolism , Tight Junctions , Induced Pluripotent Stem Cells/metabolism , Endothelial Cells/metabolism , Mechanotransduction, Cellular , Cells, Cultured , Tight Junction Proteins/metabolism , Phenotype
3.
Life Sci Space Res (Amst) ; 36: 105-115, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36682819

ABSTRACT

RATIONALE AND HYPOTHESIS: Advancements in technology, human adaptability, and funding have increased space exploration and in turn commercial spaceflight. Corporations such as Space X and Blue Origin are exploring methods to make space tourism possible. This could lead to an increase in the number of patients presenting with neurological diseases associated with spaceflight. Therefore, a comprehensive understanding of spaceflight stressors is required to manage neurological disease in high-risk individuals. OBJECTIVES: This review aims to describe the neurological effects of spaceflight and to assess countermeasures such as pre-flight prophylaxis, training, and possible therapeutics to reduce long-term effects. METHODOLOGY: A literature search was performed for experimental studies conducted in astronauts and in animal models that simulated the space environment. Many studies, however, only discussed these with scientific reasoning and did not include any experimental methods. Relevant studies were identified through searching research databases such as PubMed and Google Scholar. No inclusion or exclusion criteria were used. FINDINGS: Analysis of these studies provided a holistic understanding of the acute and chronic neurological changes that occur during space flight. Astronauts are exposed to hazards that include microgravity, cosmic radiation, hypercapnia, isolation, confinement and disrupted circadian rhythms. Microgravity, the absence of a gravitational force, is linked to disturbances in the vestibular system, intracranial and intraocular pressures. Furthermore, microgravity affects near field vision as part of the spaceflight-associated neuro-ocular syndrome. Exposure to cosmic radiation can increase the risk of neurodegenerative conditions and malignancies. It is estimated that cosmic radiation has significantly higher ionising capabilities than the ionising radiation used in medicine. Space travel also has potential benefits to the nervous system, including psychological development and effects on learning and memory. Future work needs to focus on how we can compare a current astronaut to a future space tourist. Potentially the physiological and psychological stresses of space flight might lead to neurological complications in future space travellers that do not have the physiological reserve of current astronauts.


Subject(s)
Neurology , Space Flight , Weightlessness , Animals , Humans , Vision Disorders/etiology , Astronauts , Weightlessness/adverse effects
5.
Sci Rep ; 11(1): 18519, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531413

ABSTRACT

The combined antiretroviral therapy era has significantly increased the lifespan of people with HIV (PWH), turning a fatal disease to a chronic one. However, this lower but persistent level of HIV infection increases the susceptibility of HIV-associated neurocognitive disorder (HAND). Therefore, research is currently seeking improved treatment for this complication of HIV. In PWH, low levels of brain derived neurotrophic factor (BDNF) has been associated with worse neurocognitive impairment. Hence, BDNF administration has been gaining relevance as a possible adjunct therapy for HAND. However, systemic administration of BDNF is impractical because of poor pharmacological profile. Therefore, we investigated the neuroprotective effects of BDNF-mimicking 7,8 dihydroxyflavone (DHF), a bioactive high-affinity TrkB agonist, in the memory-involved hippocampus and brain cortex of Tg26 mice, a murine model for HAND. In these brain regions, we observed astrogliosis, increased expression of chemokine HIV-1 coreceptors CXCR4 and CCR5, neuroinflammation, and mitochondrial damage. Hippocampi and cortices of DHF treated mice exhibited a reversal of these pathological changes, suggesting the therapeutic potential of DHF in HAND. Moreover, our data indicates that DHF increases the phosphorylation of TrkB, providing new insights about the role of the TrkB-Akt-NFkB signaling pathway in mediating these pathological hallmarks. These findings guide future research as DHF shows promise as a TrkB agonist treatment for HAND patients in adjunction to the current antiviral therapies.


Subject(s)
AIDS Dementia Complex/pathology , Brain/drug effects , Flavones/pharmacology , Membrane Glycoproteins/agonists , Neuroprotective Agents/pharmacology , Animals , Brain/pathology , Disease Models, Animal , Gliosis/pathology , Mice , Phosphorylation/drug effects , Protein-Tyrosine Kinases
6.
J Chem Inf Model ; 61(7): 3431-3441, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34265203

ABSTRACT

Complex reaction networks can be generated with automated network generators from initial reactants and reaction rules. Reaction rule specification is central to network generation. These reaction rules are, at present, user-defined based on (intuitive) expert knowledge of chemistry and are often transferred from gas-phase to surface processes. The catalyst active site geometry is usually left out but is often responsible for selectivity. We propose a first-principles-based reaction mechanism generation framework using density functional theory (DFT) data of published reaction mechanisms. The framework "learns the chemistry" from published mechanisms. It can generate reaction networks not studied before, "flag" reactions not seen before for further DFT convergence tests, and easily reconcile differences between catalysts and reactants that may introduce new pathways never seen before. As such, it can be a diagnostic tool for data (mechanism) quality assessment and novel pathway discovery to new molecules. A software, the Python Reaction Stencil (pReSt), was developed for this purpose to wrap around automatic mechanism generation software. Multiple catalytic chemistries are considered to show the efficacy of the proposed framework.


Subject(s)
Software
7.
J Neurovirol ; 26(5): 664-675, 2020 10.
Article in English | MEDLINE | ID: mdl-32804309

ABSTRACT

HIV-associated neurocognitive disorder (HAND) is a collective term describing the spectrum of neurocognitive deficits that arise from HIV infection. Although the introduction to highly active antiretroviral therapy (HAART) has prolonged the lifespan of HIV patients, neurocognitive impairments remain prevalent, as patients are left perpetually with HIV. Currently, physicians face a challenge in treating HAND patients, so a greater understanding of the mechanisms underlying HAND pathology has been a growing focus in HIV research. Recent research has revealed the role disrupted calcium homeostasis in HIV-mediated neurotoxicity. Calcium plays a well-established role in the crosstalk between the mitochondrion and ER as well as in regulating autophagy, and ER stress, mitochondrial dysfunction, and impaired autophagic activity are considered hallmarks in several neurodegenerative and neurocognitive disorders. Therefore, it is paramount that the intricate inter-organelle signaling in relation to calcium homeostasis during HIV infection and the development of HAND is elucidated. This review consolidates current knowledge regarding the neuropathology of neurocognitive disorders and HIV infection with a focus on the underlying role of calcium during ER stress, mitochondrial dysfunction, and autophagy associated with the progression of HAND. The details of this intricate crosstalk during HAND remain relatively unknown; further research in this field can potentially aid in the development of improved therapy for patients suffering from HAND.


Subject(s)
Autophagy/genetics , Calcium/metabolism , Cognitive Dysfunction/metabolism , Endoplasmic Reticulum/metabolism , HIV Infections/metabolism , Homeostasis/genetics , Mitochondria/metabolism , Anti-HIV Agents/therapeutic use , Antiretroviral Therapy, Highly Active , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/virology , Autophagy/immunology , Brain/drug effects , Brain/metabolism , Brain/virology , Calcium/immunology , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/virology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum Stress/immunology , Gene Expression Regulation , HIV Infections/drug therapy , HIV Infections/virology , Homeostasis/immunology , Humans , Mitochondria/genetics , Neurons/drug effects , Neurons/metabolism , Neurons/virology , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction
8.
Biotechnol Bioeng ; 116(6): 1341-1354, 2019 06.
Article in English | MEDLINE | ID: mdl-30739313

ABSTRACT

Mucin-type O-glycans have profound effects on the structure and stability of glycoproteins. O-Glycans on the cell surface proteins also modulate the cell's interactions with the surrounding environments and other cells. The synthetic pathway of O-glycans involves a large number of enzymes with diverse substrate specificity. The expression pattern of these enzymes is cell and tissue-specific, thus making the pathway highly diverse. To facilitate pathway analysis in a cell and tissue-specific fashion, we developed an integrated platform of RING (Rule Input Network Generator) and O-GlycoVis. RING uses an English-like reaction language to describe the substrate specificity of enzymes and additional constraints on the formation of the glycan products. Using this information, the RING generates a list of possible glycans, which is used as input into O-Glycovis. O-GlycoVis displays the glycan distribution in the pathway and potential reaction paths leading to each glycan. With the input glycan data, O-GlycoVis also traces all possible reaction paths leading to each glycan and outputs pathway maps with the relative abundance levels of glycans overlaid. O-Glycan profiles from two breast cancer cell lines, MCF7 and T47d, human umbilical vascular endothelium cells, Chinese Hamster Ovary cells were generated based on transcriptional data and compared with experimentally observed O-glycans. This RING-based program allows rules to be added or subtracted for network generation and visualization of networks of O-glycosylation network of different tissues and species.


Subject(s)
Biosynthetic Pathways , Polysaccharides/metabolism , Animals , Biocatalysis , Breast Neoplasms/metabolism , CHO Cells , Cricetulus , Female , Glycosylation , Human Umbilical Vein Endothelial Cells , Humans , MCF-7 Cells , Software , Substrate Specificity
9.
Metab Eng ; 49: 84-93, 2018 09.
Article in English | MEDLINE | ID: mdl-30031851

ABSTRACT

This paper describes how Rule Input Network Generator (RING), a network generation computational tool, can be adopted to generate a variety of complex biochemical reaction networks. The reaction language incorporated in RING allows representation of chemical compounds in biological systems with various structural complexity. Complex molecules such as oligosaccharides in glycosylation pathways can be described using a simplified representation of their monosaccharide building blocks and glycosidic bonds. The automated generation and topological network analysis features in RING also allow for: (1) constructing biochemical reaction networks in a rule-based manner, (2) generating graphical representations of the networks, (3) querying molecules containing a particular structural pattern, (4) finding the shortest synthetic pathways to a user-specified species, and (5) performing enzyme knockout to study their effect on the reaction network. Case studies involving three biochemical reaction systems: (1) Synthesis of 2-ketoglutarate from xylose in bacterial cells, (2) N-glycosylation in mammalian cells, and (3) O-glycosylation in mammalian cells are presented to demonstrate the capabilities of RING for robust and exhaustive network generation and the advantages of its post-processing features.


Subject(s)
Bacteria , Metabolism , Software , Animals , Bacteria/genetics , Bacteria/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...