Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Clin Biochem ; 39(1): 47-59, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223000

ABSTRACT

Meningioma is a common brain tumour which has neither a specific detection nor treatment method. The Sonic hedgehog (Shh) cell signaling pathway is a crucial regulatory pathway of mammalian organogenesis and tumorigenesis including meningioma. Shh cell signalling pathway cascade function by main transcription factor Gli1 and which further regulates in its downstream to Pax6 and Nkx2.2. This current study is aimed to explore the regulation of the Sonic hedgehog-Gli1 cell signaling pathway and its potential downstream targets in meningioma samples. A total of 24 surgically resected meningioma samples were used in this current study.Cytological changes were assessed using electron microscopic techniques as well as hematoxylin & eosin and DAPI staining. The expression pattern of Gli1, Nkx2.2 and Pax6 transcription factors were determined by using immunohistochemistry. The mRNA expression was assessed using RT-qPCR assays. Later, the whole transcriptome analysis of samples was performed with the amploseq technique. Results were compared with those obtained in normal human brain tissue (or normal meninges). Compared to the normal human brain tissue, meningioma samples showed crowded nuclei with morphological changes. Transcription factor Nkx2.2 expressed highly in all samples (24/24, 100%). Twenty-one of the 24 meningiomas (88%) showed high Gli1 and Pax6 expression. Whole transcriptome analysis of two meningioma samples also exhibited a very high increase in Gli1 expression signal in meningioma samples as compare to normal control. Hence, we may conclude that the Shh-Gli1 pathway is aberrantly activated in meningioma cells and is canonically upregulating the expression of transcription factors Pax6 and Nkx2.2. Supplementary Information: The online version contains supplementary material available at 10.1007/s12291-022-01085-1.

2.
Mol Carcinog ; 62(12): 1817-1831, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37606187

ABSTRACT

The atypical cadherin FAT1 function either as a pro or antitumorigenic in tumors of different tissue origins. Our group previously demonstrated the protumorigenic nature of FAT1 signaling in glioblastoma (GBM). In this study, we investigated how FAT1 influences the expression of clustered oncomiRs (miR-221-3p/miR-222-3p) and their downstream effects in GBM. Through several experiments involving the measurement of specific gene/microRNA expression, gene knockdowns, protein and cellular assays, we have demonstrated a novel oncogenic signaling pathway mediated by FAT1 in glioma. These results have been verified using antimiRs and miR-mimic assays. Initially, in glioma-derived cell lines (U87MG and LN229), we observed FAT1 as a novel up-regulator of the transcription factor NFκB-RelA. RelA then promotes the expression of the clustered-oncomiRs, miR-221-3p/miR-222-3p, which in turn suppresses the expression of the tumor suppressor gene (TSG), PDCD10 (Programmed cell death protein10). The suppression of PDCD10, and other known TSG targets (PTEN/PUMA), by miR-221-3p/miR-222-3p, leads to increased clonogenicity, migration, and invasion of glioma cells. Consistent with our in-vitro findings, we observed a positive expression correlation of FAT1 and miR-221-3p, and an inverse correlation of FAT1 and the miR-targets (PDCD10/PTEN/PUMA), in GBM tissue-samples. These findings were also supported by publicly available GBM databases (The Cancer Genome Atlas [TCGA] and The Repository of Molecular Brain Neoplasia Data [Rembrandt]). Patients with tumors displaying high levels of FAT1 and miR-221-3p expression (50% and 65% respectively) experienced shorter overall survival. Similar results were observed in the TCGA-GBM database. Thus, our findings show a novel FAT1/RelA/miR-221/miR-222 oncogenic-effector pathway that downregulates the TSG, PDCD10, in GBM, which could be targeted therapeutically in a specific manner.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , MicroRNAs , Humans , Glioblastoma/metabolism , Cadherins/genetics , Cadherins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Glioma/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Cell Movement/genetics , Membrane Proteins/genetics , Proto-Oncogene Proteins/genetics
3.
Front Immunol ; 13: 813888, 2022.
Article in English | MEDLINE | ID: mdl-35720420

ABSTRACT

FAT atypical cadherin 1 (FAT1) promotes glioblastoma (GBM) by promoting protumorigenic inflammatory cytokine expression in tumor cells. However, tumors also have an immunosuppressive microenvironment maintained by mediators such as transforming growth factor (TGF)-ß cytokines. Here, we have studied the role of FAT1 in tumor immune suppression. Our preliminary TIMER2.0 analysis of The Cancer Genome Atlas (TCGA) database revealed an inverse correlation of FAT1 expression with infiltration of tumor-inhibiting immune cells (such as monocytes and T cells) and a positive correlation with tumor-promoting immune cells [such as myeloid-derived suppressor cells (MDSCs)] in various cancers. We have analyzed the role of FAT1 in modulating the expression of TGF-ß1/2 in resected human gliomas, primary glioma cultures, and other cancer cell lines (U87MG, HepG2, Panc-1, and HeLa). Positive correlations of gene expression of FAT1 and TGF-ß1/2 were observed in various cancers in TCGA, Glioma Longitudinal Analysis Consortium (GLASS), and Chinese Glioma Genome Atlas (CGGA) databases. Positive expression correlations of FAT1 were also found with TGF-ß1/2 and Serpine1 (downstream target) in fresh-frozen GBM samples using q-PCR. siRNA-mediated FAT1 knockdown in cancer cell lines and in primary cultures led to decreased TGF-ß1/2 expression/secretion as assessed by q-PCR, Western blotting, and ELISA. There was increased chemotaxis (transmigration) of THP-1 monocytes toward siFAT1-transfected tumor cell supernatant as a consequence of decreased TGF-ß1/2 secretion. Reduced TGF-ß1 expression was also observed in THP-1 cultured in conditioned media from FAT1-depleted glioma cells, thus contributing to immune suppression. In U87MG cells, decreased TGF-ß1 upon FAT1 knockdown was mediated by miR-663a, a known modulator. FAT1 expression was also observed to correlate positively with the expression of surrogate markers of MDSCs [programmed death ligand-1 (PD-L1), PD-L2, and interleukin (IL)-10] in glioma tumors, suggesting a potential role of FAT1 in MDSC-mediated immunosuppression. Hence, our findings elaborate contributions of FAT1 to immune evasion, where FAT1 enables an immunosuppressive microenvironment in GBM and other cancers via TGF-ß1/2.


Subject(s)
Cadherins , Glioblastoma , Glioma , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Glioblastoma/pathology , Glioma/genetics , Glioma/metabolism , Humans , Transforming Growth Factor beta1/metabolism , Tumor Microenvironment , Up-Regulation
4.
Transl Oncol ; 14(7): 101097, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33878524

ABSTRACT

A recent study in Scientific Reports identified glypican-3 (GPC3) as a novel extracellular interacting protein for FAT1 in hepato-cellular carcinoma (HCC) cells. FAT1 is a large transmembrane atypical cadherin with limited knowledge existing about its binding partners. While in Drosophila, dachsous (ds), another transmembrane member of the cadherin superfamily, is known to function as FAT1 ligand, no ligand is known in mammals so far. The revelation of GPC3 as a potential binding partner of FAT1 extracellular domain unfolds an opportunity to study potential triggers of FAT1 signaling in cancers. Available inhibitors of GPC3 in various phases of clinical trials also present an attractive option to curb GPC3-FAT1 signaling in tumors that overexpress these proteins.

5.
BMC Cancer ; 20(1): 62, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992226

ABSTRACT

BACKGROUND: Overexpression of FAT1 gene and its oncogenic effects have been reported in several cancers. Previously, we have documented upregulation of FAT1 gene in glioblastoma (GBM) tumors which was found to increase the expression of proinflammatory markers, HIF-1α, stemness genes and EMT markers in glioma cells. Here, we reveal NFкB (RelA)/RelA/p65 as the transcriptional regulator of FAT1 gene in GBM cells. METHODS: In-silico analysis of FAT1 gene promoter was performed using online bioinformatics tool Promo alggen (Transfac 8.3) to identify putative transcription factor(s) binding motifs. A 4.0 kb FAT1 promoter (- 3220 bp to + 848 bp w.r.t. TSS + 1) was cloned into promoter less pGL3Basic reporter vector. Characterization of FAT1 promoter for transcriptional regulation was performed by in-vitro functional assays using promoter deletion constructs, site directed mutagenesis and ChIP in GBM cells. RESULTS: Expression levels of NFкB (RelA) and FAT1 were found to be increased and positively correlated in GBM tumors (n = 16), REMBRANDT GBM-database (n = 214) and TCGA GBM-database (n = 153). In addition to glioma, positive correlation between NFкB (RelA) and FAT1 expression was also observed in other tumors like pancreatic, hepatocellular, lung and stomach cancers (data extracted from TCGA tumor data). A 4.0 kb FAT1-promoter-construct [- 3220 bp/+ 848 bp, transcription start site (TSS) + 1, having 17 NFкB (RelA) motifs] showed high FAT1 promoter luciferase-activity in GBM cells (U87MG/A172/U373MG). FAT1 promoter deletion-construct pGL3F1 [- 200 bp/+ 848 bp, with 3-NFкB (RelA)-motifs] showed the highest promoter activity. Exposure of GBM cells to known NFкB (RelA)-activators [severe-hypoxia/TNF-α/ectopic-NFкB (RelA) + IKBK vectors] led to increased pGL3F1-promoter activity and increased endogenous-FAT1 expression. Conversely, siRNA-mediated NFкB (RelA) knockdown led to decreased pGL3F1-promoter activity and decreased endogenous-FAT1 expression. Deletion of NFкB (RelA)-motif at - 90 bp/- 80 bp [pGL3F1δ1-construct] showed significant decrease in promoter activity. Site directed mutagenesis at -90 bp/- 80 bp and ChIP assay for endogenous-NFкB (RelA) confirmed the importance of this motif in FAT1 expression regulation. Significant reduction in the migration, invasion as well as colony forming capacity of the U87MG glioma cells was observed on siRNA-mediated knockdown of NFкB (RelA). CONCLUSION: Since FAT1 and NFкB (RelA) are independently known to promote pro-tumorigenic inflammation and upregulate the expression of HIF-1α/EMT/stemness in tumors, targeting the NFкB (RelA)-FAT1 axis may attenuate an important tumor-promoting pathway in GBM. This may also be applicable to other tumors.


Subject(s)
Brain Neoplasms/metabolism , Cadherins/genetics , Glioma/metabolism , Transcription Factor RelA/metabolism , Binding Sites , Brain Neoplasms/genetics , Cadherins/chemistry , Cadherins/metabolism , Cell Line, Tumor , Cell Movement , Cloning, Molecular , Computer Simulation , Gene Expression Regulation, Neoplastic , Glioma/genetics , Humans , Mutagenesis, Site-Directed , Promoter Regions, Genetic , Signal Transduction
6.
Asian Pac J Cancer Prev ; 19(12): 3415-3425, 2018 Dec 25.
Article in English | MEDLINE | ID: mdl-30583664

ABSTRACT

Background: The association of primary brain tumors with Single Nucleotide polymorphisms (SNPs) in genes of folate metabolising enzymes have been reported to vary among different ethnic population. Here, we have studied the association of SNPs of folate metabolizing genes with the primary brain tumors (glioma and meningioma) in North Indian population. Methods: SNPs of genes coding for folate metabolizing enzymes was carried out in 288 study population from North India [Glioma (n=108), Meningioma (n=76) and healthy-control (n=104)]. The allele-specific polymerase chain reaction (ARMS-PCR) was used to analyse the SNP A1298C of the MTHFR (Methylenetetrahydrofolate-reductase) and the SNP A66G of the methionine synthase reductase (MTRR) genes. The PCR-RLFP (Restriction Fragment Length Polymorphism) was used to analyse the SNP C677T of the Methylene tetrahydrofolate-reductase and the SNP A2756G of the methionine-synthase (MTR) genes. Serum homocysteine, vitamin B12 and folate levels were evaluated in controls/ patients serum using Chemiluminescence immunoassay and the levels were correlated with SNPs genotype. Results: The CC genotype of MTHFR A1298C was observed to have reduced risk of having meningioma than AA genotype (odd ratio=0.62, 95%CI 0.32-0.97, p=0.03). Similarly, the AG genotype of MTRR A66G showed reduced risk of glioma than AA genotype (odd ratio=0.56, 95%CI 0.32-0.97, p=0.039). Furthermore, in patients with AA genotype of MTR A2756G and CT genotype of MTHFR C677T showed higher serum homocysteine level than GG genotype (8.6 µmol/L, p=0.048) and CC genotype (11.2µmol/L, p=0.039) respectively. Conclusion: Our findings provide an insight into the risk association of SNPs in MTHFR A1298C and MTRR A66G genes with glioma/meningioma patients. Further studies are needed to evaluate their clinical implications.


Subject(s)
Folic Acid/genetics , Folic Acid/metabolism , Glioma/genetics , Meningioma/genetics , Polymorphism, Single Nucleotide/genetics , Adult , Alleles , Asian People/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Case-Control Studies , Female , Ferredoxin-NADP Reductase/genetics , Genetic Predisposition to Disease/genetics , Genotype , Glioma/metabolism , Humans , India , Male , Meningioma/metabolism , Methylenetetrahydrofolate Reductase (NADPH2)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...