Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 50(11): 3568-79, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16940059

ABSTRACT

WCK 771 is a broad-spectrum fluoroquinolone with enhanced activity against quinolone-resistant staphylococci. To understand the impact of the target-level interactions of WCK 771 on its antistaphylococcal pharmacodynamic properties, we determined the MICs for genetically defined mutants and studied the mutant prevention concentrations (MPCs), the frequency of mutation, and the cidality against the wild type and double mutants. There was a twofold increase in the MICs of WCK 771 for single gyrA mutants, indicating that DNA gyrase is its primary target. All first- and second-step mutants selected by WCK 771 revealed gyrA and grlA mutations, respectively. The MICs of WCK 771 and clinafloxacin were found to be superior to those of other quinolones against strains with double and triple mutations. WCK 771 was also cidal for high-density double mutants at low concentrations. WCK 771 and clinafloxacin showed narrow mutant selection windows compared to those of the other quinolones. Against a panel of 50 high-level quinolone-resistant clinical isolates of staphylococci (ciprofloxacin MIC > or = 16 microg/ml), the WCK 771 MPCs were < or =2 microg/ml for 68% of the strains and < or =4 microg/ml for 28% of the strains. Our results demonstrate that gyrA is the primary target of WCK 771 and that it has pharmacodynamic properties remarkably different from those of quinolones with dual targets (garenoxacin and moxifloxacin) and topoisomerase IV-specific quinolones (trovafloxacin). WCK 771 displayed an activity profile comparable to that of clinafloxacin, a dual-acting quinolone with a high affinity to DNA gyrase. Overall, the findings signify the key role of DNA gyrase in determining the optimal antistaphylococcal features of quinolones.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fluoroquinolones/pharmacology , Quinolones/pharmacology , Staphylococcus aureus/drug effects , Topoisomerase II Inhibitors , Drug Resistance, Bacterial/genetics , Enzyme Inhibitors/pharmacology , Methicillin Resistance/drug effects , Methicillin Resistance/genetics , Microbial Sensitivity Tests , Mutation , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics
2.
J Med Chem ; 48(16): 5232-42, 2005 Aug 11.
Article in English | MEDLINE | ID: mdl-16078842

ABSTRACT

There is an urgent medical need for novel antibacterial agents to treat hospital infections, specially those caused by multidrug-resistant Gram-positive pathogens. The need may also be fulfilled by either exploring antibacterial agents having new mechanism of action or expanding known classes of antibacterial drugs. The paper describes a new chemical entity, compound 21, derived from hitherto little known "floxacin". The choice of the entity was made from a series of synthesized prodrugs and salts of the active chiral benzoquinolizine carboxylic acid, S-(-)-nadifloxacin. The chemistry, physicochemical characteristics, and essential bioprofile of 21 qualifies it for serious consideration as a novel drug entity against hospital infections of multi-drug-resistant Staphylococcus aureus, and its progress up to clinical phase I trials in humans is described.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Fluoroquinolones/chemical synthesis , Quinolizines/chemical synthesis , Staphylococcus aureus/drug effects , Vancomycin Resistance , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Area Under Curve , Clinical Trials, Phase I as Topic , Dogs , Drug Resistance, Multiple, Bacterial , Female , Fluoroquinolones/pharmacology , Fluoroquinolones/toxicity , Half-Life , Humans , Infusions, Intravenous , Injections, Intravenous , Male , Methicillin Resistance , Mice , Microbial Sensitivity Tests , Mutation , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Prodrugs/toxicity , Quinolizines/pharmacology , Quinolizines/toxicity , Rats , Rats, Wistar , Staphylococcal Infections/drug therapy , Staphylococcus aureus/genetics , Stereoisomerism , Structure-Activity Relationship
3.
Antimicrob Agents Chemother ; 48(12): 4754-61, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15561853

ABSTRACT

WCK 771, the arginine salt of S-(-)-nadifloxacin, was evaluated in animal models of staphylococcal infection and in vitro. For 302 methicillin-susceptible strains the MIC at which 50% of isolates are inhibited (MIC50) and the MIC90 of WCK 771 were 0.03 and 0.03 microg/ml, respectively, and for 198 methicillin-resistant strains the MIC50 and the MIC90 were 0.5 and 1.0 microg/ml, respectively. All methicillin-susceptible staphylococci were quinolone susceptible, and almost all methicillin-resistant staphylococci were quinolone resistant. WCK 771 was more potent than moxifloxacin, trovafloxacin, levofloxacin, and ciprofloxacin and had potency comparable to that of clinafloxacin. Only WCK 771 and clinafloxacin demonstrated strong potencies against vancomycin-intermediate Staphylococcus aureus strains (MICs = 1 microg/ml). WCK 771 is not a substrate of the NorA pump, as evident from the lack of an effect of reserpine on the MICs and similar protective doses against infections caused by efflux-positive and -negative staphylococci. WCK 771 was effective by both the oral and the subcutaneous routes in mice infected intraperitoneally with quinolone-susceptible methicillin-susceptible S. aureus (MSSA) strains. For infections caused by quinolone-resistant methicillin-resistant S. aureus (MRSA) strains, the activity of WCK 771 administered subcutaneously was superior to those of trovafloxacin and sparfloxacin, with a 50% effective dose range of 27.8 to 46.8 mg/kg of body weight. The activity of WCK 771 was superior to those of moxifloxacin, vancomycin, and linezolid in a mouse cellulitis model of infection caused by one MSSA and two MRSA strains, with effective doses of 2.5 and 5 mg/kg for the MSSA strain and 10-fold higher effective doses for MRSA strains. WCK 771, like vancomycin and linezolid, eradicated MRSA from mouse liver, spleen, kidney, and lung when it was administered subcutaneously at a dose of 50 mg/kg for four doses. These studies have demonstrated the effectiveness of WCK 771, administered orally and parenterally, for the treatment of diverse staphylococcal infections in mice, including those caused by quinolone-resistant strains.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Fluoroquinolones/therapeutic use , Staphylococcal Infections/drug therapy , Administration, Oral , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Area Under Curve , Bacterial Proteins/genetics , Cellulitis/drug therapy , Cellulitis/microbiology , Drug Resistance, Bacterial , Fluoroquinolones/pharmacokinetics , Fluoroquinolones/pharmacology , Half-Life , Injections, Subcutaneous , Methicillin Resistance , Mice , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins , Quinolizines/pharmacokinetics , Quinolizines/pharmacology , Quinolizines/therapeutic use , Sepsis/drug therapy , Sepsis/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics
4.
Antimicrob Agents Chemother ; 48(9): 3338-42, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15328094

ABSTRACT

The activity of WCK 771, an experimental quinolone developed to overcome quinolone resistance in staphylococci and other bacteria, was determined against quinolone-susceptible and -resistant Staphylococcus aureus and S. epidermidis. WCK 771 MICs for 50 and 90% of the strains tested (MIC(50) and MIC(90), respectively) were 0.008 and 0.015 microg/ml for S. aureus (n = 43) and 0.015 and 0.03 microg/ml for S. epidermidis (n = 44) for quinolone-susceptible isolates, compared to ciprofloxacin values of 0.12 and 0.25 microg/ml and 0.25 and 0.5 microg/ml, respectively. Values for levofloxacin were 0.12 and 0.25 microg/ml and 0.12 and 0.25 microg/ml, those for clinafloxacin were 0.015 and 0.03 microg/ml and 0.015 and 0.03 microg/ml, those for moxifloxacin were 0.03 and 0.06 microg/ml and 0.06 and 0.12 microg/ml, and those for gatifloxacin were 0.06 and 0.12 microg/ml and 0.12 and 0.25 microg/ml, respectively. The WCK 771 MIC(50) and MIC(90), respectively, were 0.5 and 1 microg/ml for both species of staphylococci (n = 73 for S. aureus, n = 70 for S. epidermidis) for isolates highly resistant to ciprofloxacin (MIC(50) and MIC(90), >32 and >32 microg/ml, respectively). Values for levofloxacin were 8 and 32 microg/ml and 8 and 32 microg/ml, those for clinafloxacin were 1 and 2 microg/ml and 0.5 and 2 microg/ml, those for moxifloxacin 4 and >4 microg/ml and 4 and >4 microg/ml, and those for gatifloxacin were 4 and >4 microg/ml and 2 and >4 microg/ml, respectively. WCK 771 and clinafloxacin demonstrated MICs of 1 microg/ml against three vancomycin-intermediate strains. WCK 771 showed concentration-independent killing for up to 24 h at 2, 4, and 8 times the MICs against quinolone-resistant staphylococci and was also bactericidal after 8 h for high-density inocula (10(8) CFU/ml) of quinolone-resistant strains at 5 microg/ml, whereas moxifloxacin at 7.5 microg/ml was bacteriostatic. WCK 771 was not a substrate of the NorA efflux pump as evident from the similar MICs against both an efflux-positive and an efflux-negative strain. Overall, WCK 771 was the most potent quinolone tested against the staphylococci tested, regardless of quinolone susceptibility.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fluoroquinolones/pharmacology , Staphylococcus/drug effects , Bacterial Proteins/genetics , Colony Count, Microbial , Drug Resistance, Bacterial , Humans , Kinetics , Methicillin Resistance , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins , Quinolones/pharmacology , Staphylococcal Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...